Gas Prices are High, But Don’t Blame the Usual Suspects: Implications for Policy

A.  Introduction

Gasoline prices in the US (and indeed elsewhere) are certainly high.  Given that in the US much of the voting population views cheap gas as much of a right as life, liberty, and the pursuit of happiness, this has political implications.  It is thus not surprising that politicians, including those in the Biden administration, are considering a range of policy measures with the hope they will bring these gas prices down.  And while fuel prices have indeed come down some in the last few weeks from their recent peak, they remain high, and their path going forward remains uncertain.

One of the most common such measures, already implemented in six states (as of July 6) and under consideration in many more, has been to reduce or end completely for some period state taxes on fuels.  And President Biden on June 22 called on Congress to approve a three-month suspension of federal gas and diesel taxes.  The political attraction of such proposals is certainly understandable.  A Morning Consult / Politico public opinion poll in March found that 72% of those surveyed would favor “a temporary break from paying state taxes on gasoline”, and 73% would favor a similar “temporary break from paying federal taxes on gasoline”.  It is hard to find anything these days that close to three-quarters of the population agree on.

But would this in fact help to reduce what people are paying at the pump?  The answer is no.  One has to look at what led to the recent run-up in gas and other fuel prices, and only with a proper understanding of that can the appropriate policy response be worked out.  Cutting taxes on fuels should not be expected to lead to a reduction in what people pay at the pump for their gas.  Indeed, what could lower these prices would be to raise fuel taxes, and then use the funds generated to cover measures that would, in the near term, reduce the demand for these fuels.

This post will first examine the recent run-up in fuel prices, putting it in the context of how that market has functioned over the last decade and what is different now.  Based on this, it will then look at what the impact would be of measures such as cutting fuel taxes, releasing crude oil from the nation’s Strategic Petroleum Reserve, encouraging more drilling for oil, and similar.  None of these should be expected, under current conditions, to lead to lower prices at the pump.

Rather, one could raise fuel taxes and use these funds to support measures that would reduce the nation’s usage of gas.  For example, an immediate action that would be effective as well as easy to implement would be to encourage ridership on our public transit systems by simply ending the charging of fares on those systems.  One could stop charging those fares tomorrow – nothing special is needed.  Some share of those driving their cars for commuting or for other trips would then switch to transit, which would lead to a reduction in fuel demand and from this a reduction in fuel prices.  The lower price will benefit all those who buy gas, including those in rural areas who have no transit options.  And as will be discussed, the cost to cover what is being collected in fares would be really quite low.

A note on usage:  All references to “gas” in this post are to gasoline.  They are not to natural gas (methane) nor indeed any other gas.  Fuels will refer to gasoline and diesel together, where statements made with a specific reference to gas will normally apply similarly to diesel.

B.  The Rise in Fuel Prices and the Factors Behind It

Fuel prices have certainly gone up in the first half of 2022.  As shown in the chart at the top of this post, despite the fall in recent weeks fuel prices (the line in red) are still 75% above where they were in early-December (in June they were more than double), with those December 2021 prices double what they had been in October / November 2020.  Crude oil prices (the line in black) have also been going up, and have been since late 2020 (following the dip earlier in 2020 due to the Covid lockdowns).  This rise in the price of crude oil can explain the rise in the retail prices for fuels up through early this year.  But as we will discuss, the factors behind the more recent rise in fuel prices changed in late February 2022 – coinciding with Russia’s invasion of Ukraine.

First, some notes on the data.  The figures all come from the Energy Information Administration (EIA), part of the US Department of Energy, and weekly averages are used.  For reasons to be discussed below, the price of “fuel” is a 2:1 weighted average of the prices of regular unleaded gasoline (unleaded) and diesel (ultra low-sulfur no. 2), both wholesale FOB spot prices and for delivery at the US Gulf Coast.  While it is an average, this does not really matter much in practice as the wholesale prices of gas and diesel have not, at any point in time, differed by all that much from each other.  They move together.  Nor have their average prices over time differed by all that much.  For the period since the start of 2014, the average wholesale cost of gas was $1.81 per gallon while that for diesel was $1.90 – a difference of just 9 cents.  While there can be larger differences at various points in time, for the purposes here the distinction between the two fuels is not central.

The cost of crude oil (the line in black) is for West Texas Intermediate (FOB spot price, for delivery at Cushing, Oklahoma), the benchmark crude most commonly used in the US and also the basis for the main financial contracts used to hedge the price of oil in the US.  It is presented here on a per-gallon basis to make it comparable to the other prices, where one barrel of oil is equivalent to 42 gallons.

A refinery will purchase crude oil and then through various processes refine that oil into gasoline, diesel, and other petroleum products that can then be used as fuels by our cars and trucks as well for other purposes.  The difference in price between what the refinery can sell these finished products for and the cost of the crude it buys as the primary input is called the “crack spread”.  While the crack spread will be unique for each refinery, as it will depend on the technology it has (how modern and efficient it is), what types of crude it has been designed to process most efficiently (as different crudes have different characteristics, such as viscosity and sulfur content), the mix of specific products it produces (the share ending as gas or diesel, but also jet fuel, heating oil, etc.), and the location of the refinery (as the crude oil must be delivered to it, and it then must arrange for the delivery of its products to the ultimate purchasers), a simplified standard spread is often calculated to provide an indication of how market prices are moving.  The most common such standard spread is called the “3-2-1 crack spread”.

The 3-2-1 crack spread is calculated for a refinery that would process 3 barrels of crude oil into 2 barrels of gasoline and 1 barrel of diesel.  For the calculations here, all were expressed on a per-gallon basis, and the specific fuels and delivery locations are as specified above.  The 3-2-1 crack spread is then simply calculated as the value of two gallons of gasoline plus one gallon of diesel, minus the cost of three gallons of crude oil, with that total then divided by three as three gallons of fuel are being produced.  It is a gross spread, as a refinery will of course have other operational costs (including the cost of labor), plus the refinery will need to generate a return on the capital invested for it to be viable in the long term.  But this simple gross spread is often used as an indicator of what is happening in the market.

That calculated 3-2-1 crack spread is presented as the blue line in the chart at the top of this post.  From 2014 through 2021, it rarely moved above $0.50 per gallon, and it averaged just $0.36 per gallon over the period.  In 2021 it was not much higher, averaging $0.42 per gallon over the year.  But from late February 2022, coinciding with the Russian invasion of Ukraine, it has shot upward.  As of the week ending June 24 it had reached $1.46 per gallon, but as of the week ending July 8 it had come down to $1.02.  That is still high – it is still close to three times what it had averaged before.

To understand the factors that led to this jump in the crack spread this year, one should first consider how prices are determined in these markets.  The key is that the crack spread is not itself an independently determined price, but rather a spread between the price of the final product (gasoline and diesel fuels) and the price of crude oil, both of which are determined independently.

Start with the final products – gasoline and diesel:  These are sold in highly competitive markets of numerous gas stations pricing their product to sell at the best prices they can get, but where for the nation as a whole, stocks of the fuels are kept within a narrow range.  One can calculate (again from EIA data), that in recent years (2017 through 2022H1), the nation’s stocks of motor gasoline have averaged 236 million barrels, with no clear upward or downward trend.  While the stocks will vary over the course of the year due to seasonality, at comparable weeks in the year they have been kept in a relatively narrow range, with a standard deviation of just 2.1% of the weekly averages over this period.  This means (assuming a normal distribution, which is reasonable) that in about two-thirds of the weekly cases, the stocks will be within +/- 2.1% of the average for those weeks (one standard deviation), and in 95% of the cases will be within +/-4.2% of the averages (two standard deviations).  That is, the stocks are managed to stay within a relatively narrow range, although at a target level that depends on the season of the year.

In such a market, if producers (either directly or through the gas stations they contract with) price their gasoline at too low a price for the conditions of the time, they will find that their stocks will be running down – soon to unsustainable levels.  They would need to ration what they sell, either by long lines at the pumps or by some direct rationing system.  And if they price their gasoline at too high a price, they will find their stocks accumulating to levels that exceed what they can store.  They sell their gas for the highest price they can get, but that price will be constrained to be such that they will be able to manage their inventories of refined gasoline (and similarly for diesel fuels) to within a certain range.  And as noted above, that range is a narrow one of normally just +/- 2% or so.

Crude oil prices are determined differently.  Here there is a world market, where OPEC producers (as well as a few producers who cooperate with OPEC, where the most prominent is Russia) set production ceilings by OPEC member (and cooperative partner) with the aim of achieving some price target.  They do not always succeed in achieving that target, as global conditions can change suddenly.  Recent examples include conditions triggered by the Covid crisis in 2020, or by the global financial crisis that began in the US in 2008.  OPEC also responds sluggishly to changes in the markets, particularly when crude oil prices are rising – which many OPEC members are rather pleased with – as the production quotas must be negotiated among the members.  But it is correct to say that the market for crude oil is a managed one, although often not a terribly well managed one due to the inherent difficulty in forecasting global demands and then responding on a timely basis to unexpected changes.

With the retail price of the fuels determined on the one side by conditions in the competitive markets for fuels, and the price of crude oil determined on the other side by the actions of OPEC and those who cooperate with it, the crack spread will be a margin that has now been determined.  That is, it is not a price that the refiners themselves will normally be able to set.  There is a lower limit, as a gross crack spread that is too low to cover their other operating costs (and is expected to stay that low for some time), will lead refiners to shut down their operations.  But based on what we observe for the period from 2014 in the chart at the top of this post, it appears that a crack spread of $0.36 per gallon (the average from 2014 through 2021) is sufficient to cover such costs as well as provide a return on the capital invested, as refineries stayed open and continued to produce over this period with such a spread.

This spread then jumped in late February of this year – coinciding with the Russian invasion of Ukraine – to a level that has been between three and four times what it was before.  What happened?  While the Russian invasion was clearly significant, one should look at this in the context of where the market was just prior to the invasion.  It was tight, and the Russian invasion should be seen as a tipping point where refinery supplies of these fuels could no longer meet the demand.

First of all, demand has been growing, both in the US and in the rest of the world, as economies have recovered from the lockdowns that were necessary at the start of the Covid crisis.  The US enjoyed a particularly strong recovery in 2021, with real GDP growing by 5.7% – the fastest such growth in any calendar year in the US in close to 40 years.  And the personal consumption component of GDP rose by 7.9% in 2021 – the fastest such growth in any year since 1946!  But it should be recognized that this was coming after the sharp falls in 2020 due to Covid (of 3.4% for GDP and 3.8% for personal consumption).  The rest of the world recovered similarly in 2021, although at various different rates.

This raised the demand for gas, diesel, and other fuels.  Petroleum refineries could keep up in 2021, as this followed the lower demands they had for their products in 2020.  But the lower demands (and hence lower refinery throughputs) in 2020 due to Covid did have an effect.  It led to decisions to close some of that refinery capacity, leading to a reduction in capacity in 2021 for the first time in decades.  Albeit small, worldwide, refinery capacity fell from 102.3 million barrels per day in 2020 to 101.9 million barrels in 2021 (a fall of 0.4%).  Refinery capacity in the US fell similarly, from 18.1 million barrels per day in 2020 to 17.9 million barrels in 2021 (a fall of 1.1%).  With the recovery in demand for fuel products in 2021, this placed producers at closer to their limits.

But the limit to how much petroleum refineries can produce is pretty rigid.  They normally operate on a continuous, 24-hours a day, basis – at a rate as close as possible to their design capacity.  Thus they cannot increase production by adding an extra work shift or by running processes at a faster rate.  They do need to shut down periodically for preventive maintenance, as their systems are complex and they must deal with flammable liquids that are being processed at often high temperatures and pressures, where a failure of some part can lead to a catastrophic explosion.  They must also shut down on occasion for safety reasons, such as when a hurricane or other major storm threatens (an increasingly frequent occurrence in recent years in the US Gulf Coast, where much of the US refinery capacity is located, due to climate change – such weather-related shutdowns are discussed further below).  In general, then, refinery throughput is highly constrained in the short run by existing available capacity, which is being run continuously at as high a rate as they can.

Over the longer term, refinery capacity will depend on what investments are made to expand that capacity.  But new refineries cost billions of dollars, are rare, and when undertaken take many years to plan and then build.  Significant expansions in existing refineries are also very costly, and also require significant time to plan and then build.  Thus such investments are very carefully considered and are only made when they expect there will be a demand for the products of those refineries for many years to come – at least a decade or more.  It is not something they rush into.  Even if capacity is tight right now, such investments will not be made unless the owners expect those conditions to last for an extended time.  And even if the decision is made to make such an investment to expand capacity, it will normally take years before the added capacity will become available.

Thus in the near term, when one is already operating at close to the design limits of the refineries it will not be possible to supply much more than what the existing available capacity will allow.  Economists call this “inelastic supply”, as the percentage increase in supply of some product for some given percentage increase in the price that would be paid for that product (an “elasticity”) is low.  For refineries that are already operating at close to their technical limits, it will be very low.

The other factor in price determination is demand.  And for fuels such as gas or diesel, many will say the price elasticity of demand for such fuels is also low.  Indeed, a common view in the general population is that the price elasticity of demand for gas is zero – that they will have to buy the same number of gallons each week whatever the price is.  This is not really true (and contradicted by the assertion that they also cannot “afford” to pay more – if true, then at a higher price they will have to buy less).  But studies have found that while not zero, it is low.

For example, the Energy Information Agency in 2014 estimated the price elasticity of demand for gasoline in the US was just -0.02 to -0.04.  That is tiny.  It implies that if the price of gas were to rise by 10% (say from $4.00 to $4.40 per gallon), the demand for gas would decline only by 0.2 to 0.4%.  Other estimates that have been made have often been somewhat higher, although still low.  A widely cited review in 1998 by Molly Esprey, for example, examined 300 published studies, and found that the median estimate of this elasticity across those studies was -0.23.  This is still low.  It implies that a 10% increase in the price will be met by only a 2.3% fall in demand.

With a demand for fuel that does not go down by much when prices rise, and a supply for fuel that does not go up by much when prices rise (i.e. when refineries are already operating at close to their capacity), one should expect prices for fuels to be volatile.  And they are.  Even small shifts in the available supply or in the demand can lead to big changes in prices.

In these already tight markets of early 2022, Russia then invaded Ukraine on February 24.  The crack spread rose from $0.49 per gallon for the week ending February 25, to $0.64 the following week and to $0.74 the week after that.  It reached $0.88 by the end of March and $1.35 by the end of April.  As of the week ending June 24 it had reached $1.46, but then came down to $1.02 two weeks later.

The Russian invasion not only affected production at refineries in Ukraine, but international sanctions on Russia meant a significant share of Russian refineries would also no longer supply global markets.  While refineries in Ukraine are not a significant share of global capacity (just 0.2% in 2021), refineries in Russia are significant, with a 6.7% share of global capacity in 2021.  As a comparison, US refineries account for 17.6% of global capacity.

One should note that this does not mean that global capacity was effectively reduced by 6.7% of what it was.  Russian refineries continued to produce for their own markets, while also supplying others.  But the sanctions have reduced the volume effectively available by a significant amount.

In a market that was already tight, with refineries operating at close to capacity following the strong recovery demand in 2021 in the US and much of the world, such a reduction in effective supply acted as a tipping point.  The 3-2-1 crack spread shot up immediately.

C.  Policy Implications

What, then, can be done to reduce fuel prices?  I will take it as a given that that is the objective.  A case could well be made that to address climate change and the consequent need to reduce the burning of fossil fuels, high prices are good.  But while important, that is a separate issue I am not trying to address in this post.

First, where are gas prices now?:

The figures here are based on data gathered by the Bureau of Labor Statistics (BLS) for its calculations of the monthly CPI.  The figures are a consistent series going back to 1976 (further back than any other consistent series I have been able to find), are available in current price terms per gallon, and are not (here) seasonally adjusted so they reflect the actual prices paid that month.  And like the overall CPI that is commonly cited, it is an estimate of prices in urban areas.

As of June 2022, the average retail price of regular unleaded gasoline in the US was $5.058 per gallon.  For the chart, I have then shown what the historical prices would have been when adjusted for general inflation to the prices of June 2022 (based on the overall CPI).  The June prices are not the highest gas prices have been – they hit $5.51 a gallon in July 2008 – but they are close.  Although declining in recent weeks as I am writing this, it remains to be seen whether gas prices might resume their upward trend sometime soon.  The markets continue to be volatile, and prices could soon set a new record.

Whether that will happen will depend in part on what the policy response now is.  There are measures that can be taken that will reduce prices, but also measures that are being discussed that would likely have little effect, or might even raise prices. In this section, I will first discuss why, given the underlying causes of the price increases this year discussed above, some of the measures being discussed will likely do little and might indeed be counterproductive.  I will then discuss measures that could help lead to a reduction in prices.

1)  What Not To Do

First, some policies that will not lead to lower prices, or might even lead to higher prices:

a)  Perhaps the most widespread assumption is that if OPEC produced more crude oil, gasoline prices would then fall.  But that should not be expected given the current situation.  As seen in the chart at the top of this post, the crack spread widened sharply starting in late February, as a certain share of global refining capacity became not usable.  In the already tight markets refinery capacity became the effective binding constraint, not the price of crude oil.

More crude oil production by OPEC (or indeed by anyone) could well lead to lower crude oil prices – and indeed likely would.  But unless more of that crude oil can be refined into final fuel products such as gasoline, the available supply of gas in the market would not be affected.  Retail prices would remain the same.  What would change is that if crude oil prices decline by some amount with the increased supply of crude, the crack spread would widen.  That is, refiners would gain by this.  Consumers would not.

b)  For the same reason, sale of crude oil out of the Strategic Petroleum Reserve should not be expected to lead to lower retail prices for gas either.  President Biden announced on March 31 that the US would start to sell one million barrels of crude oil per day (an unprecedented amount) out of the US Strategic Petroleum Reserve for at least six months.  This announcement may well have had some effect on crude oil prices:  Crude oil prices had been rising through late March and then fell a bit (before returning to March levels in late May, and then continuing to rise until mid-June).  But this did not affect retail prices for fuels, which continued to rise until the last few weeks.  Rather, the crack spread rose (as seen in the chart at the top of this post) as refiners were able to obtain a larger margin between what they could sell their products for and what they had to pay for their crude oil.

c)  Also popular has been the proposal to reduce or eliminate taxes on the sale of gas and other fuels.  The federal tax is 18.4 cents per gallon on gasoline and 24.4 cents on diesel, while state taxes are of varying amounts.

President Biden on June 24 called on Congress to approve a temporary suspension of federal taxes on gas and diesel for three months.  As of my writing this, Congress had not approved such a suspension (it would complicate infrastructure funding, as such funding is linked to fuel tax revenues), and it does not look likely that it will.  But one never knows.  And as of July 6, six states had suspended their state fuel taxes for varying periods, with many more considering it.

What effect would such a tax cut have?  First, consider the federal tax, as it applies across the entire country.  As discussed above, the supply of fuels such as gas and diesel is constrained by available refinery capacity.  Economists refer to this as operating where the supply curve is “vertical”, in that a higher price for the fuel cannot elicit a significant increase in the supply of the fuel in the near-term, due to the capacity constraint.  A lower tax will not then lead to a lower price, as a lower price (if one saw it) would lead to greater demands for the fuels and refiners cannot supply more.  In such a situation, refiners are earning a rent, and a lower tax to be paid on the fuels will just mean that the refiners will be able to earn an even larger profit than they are already.  The crack spread will go up by the amount the tax on fuels is reduced.

The situation would be different if refiners could supply a higher amount.  Retail prices would fall by some amount due to the reduction in the tax, supplies would rise by some amount, and in the end consumers and refiners would share in the near-term gains from the lower tax.  What those relative shares will be will depend on how responsive the supply of fuels would be from the refiners (the elasticity of supply).  In the extremes, if refiners are able and willing to supply the increase in demand at an unchanged price (the supply curve is flat), then retail prices will fall by the entire amount of the tax cut and consumers will enjoy all of the benefit.  But if refiners are unable to supply more due to capacity constraints, then retail prices will be unchanged by the tax cut and refiners will pocket the full amount of the tax cut.  Currently, we are far closer to the latter set of circumstances than to the former.

The situation is a bit different at the state level.  If one state cuts its taxes while the taxes remain the same elsewhere, refiners will be able to move product to meet the higher sales of fuels in the state where taxes were cut.  This would, however, be at the expense of lower supply in the states that did not cut their taxes.  Fuel prices in the state cutting its taxes (and not matched by others) will fall by some amount due to the now higher availability of fuels in that state.  But with the overall supply constrained by what the refineries can produce, the lower amounts supplied to the rest of the country will lead to higher prices in the rest of the country.

Overall there will be no benefit, and indeed on average prices (net of taxes) will rise.  But there will be some redistribution across the states.  The amount will depend on what share of the states decide to cut their taxes.  At one extreme, if only one state does it and that state does not account for a large share of the overall US market, then the retail price (inclusive of taxes) will fall in that state.  If that state is small, prices elsewhere in the country would only rise by a small amount, but they still would rise.  But if more and more states decide to cut their fuel taxes, then one will approach the situation discussed above with the cut in federal taxes on fuels.  The full benefits of the lower taxes will accrue to the oil refiners, not to any consumers.

Finally, one needs to recognize that there is no free lunch.  The states cutting their fuel taxes will need to make up for the revenues they consequently lose.  To fund the expenditures paid for by the fuel taxes (often investments in road and other infrastructure), those states would need to raise their taxes on something else.

2)  What To Do

So what would lead to lower fuel prices given the current conditions?  The simple fact is that for prices to go down, one will need either to increase the supply of the refined products, or reduce the demand for them.  Taking up each:

a)  As was discussed above, refineries normally operate at close to their maximum capacity, and there is not much margin to respond to unforeseen demands.  Refineries are expensive, hence are not designed with much excess capacity to spare, and when operating are operated on a continuous, 24-hour a day, basis.  They also need to be shut down periodically for scheduled maintenance, as well as when unscheduled maintenance is required or when a strong storm threatens.

Still, there might be some measures that can be taken to push refinery throughput at least a bit higher.  Refiners certainly have an incentive to do so, given how high the crack spread is now (three to four times higher in recent months than what it was on average between 2014 and 2021).  But the crack spread does not need to be anywhere close to that high to provide a strong incentive.  A spread that is double what it would be in more normal times should more than suffice to elicit refiners to do whatever they can to maximize refinery throughputs.

There will also be an element of luck, given the increasingly volatile weather conditions that climate change has brought.  One can see this in a simple snapshot of a chart available on the EIA website, showing idle US refinery capacity (which is more properly measured by and referred to as distillation capacity) by month going back to 1985:

Volatility rose significantly starting in 2005 (the year of Hurricanes Katrina and Rita) and has been high since.  The sharp peaks seen in the chart are all in September or October – the peak months of hurricane season for the US.  Especially prominent peaks in the capacity that had to be idled were in September 2008 (Hurricanes Gustav and Ike), September 2017 (Hurricane Harvey), and September 2021 (Hurricane Ida).  With hurricanes threatening, refineries must be shut down for safety.  How fast they can then reopen depends on how much damage was done, but will require some time even if there was only limited damage.

It is impossible to say what will happen in the upcoming hurricane season.  But with the market so tight, any closures could have a large impact on prices.

b)  The other side to focus on is demand.  This could also be more productive in the near term given that little more may be possible on the supply side (as well as subject to chance, given the uncertainty in what will happen in the upcoming hurricane season).  But progress on demand-side measures will depend on political will, and Americans have been historically averse to measures that would reduce the near-term demand for fuels.

But it is important to recognize that not much would be needed in terms of reduced demand in order to reduce fuel prices by a substantial amount.  This is precisely because the demand for fuels is so price inelastic, as discussed before.  That is, a substantially higher price for gas does not lead to all that much of a reduction in the quantity of it purchased.  What economists call the “demand curve” (the amount purchased at any given price) is close to vertical.  When this is coupled with an also close to vertical supply curve for refined products (as refineries are operating close to their capacity, and cannot produce more no matter what price they can get), small shifts in the amount demanded at any given price will have a major effect.

[An annex at the end of this post uses simple supply and demand curves to examine this graphically.]

Given this lack of sensitivity to price under current conditions for both supply and demand, it would not take all that much to get prices to fall by a substantial amount.  Supply of refined products is constrained by refineries operating at close to their maximum, while on the demand side, purchases of fuels do not adjust by much when prices change.  As was noted above, the EIA in 2014 published an estimate of the price elasticity of demand for gasoline of just -0.02 to -0.04.  That implies that a 10% rise in the price of gas would reduce demand by only 0.2 to 0.4%.  Others have estimated higher elasticities, but all still relatively low.

Suppose, for the sake of illustration, that the price elasticity of demand was -0.10, so that a 10% rise in the price would lead to a reduction in demand of 1%.  This relationship also tells us a good deal about the shape of the demand curve – specifically its slope (locally).  If facing a completely vertical supply curve, then it implies that a 1% reduction in the demand for gasoline at any given price (meaning a shift in that demand curve to the left by 1%) would lead to a new price that is 10% lower than before.  And a 2% shift would lead to a price that is 20% lower.  While extrapolating in this way from what might be true for small changes to something substantially larger is dangerous, a 20% fall in the price of gas that is at $5.00 per gallon would lead to a new price of $4.00 per gallon – all resulting from just a 2% shift in the demand.  This is substantial but depends, as noted above, on how responsive demand is to the price.  If truly not very responsive, as is commonly held by many, then it will not take much of a reduction in demand (at any given price) to lead to a very substantial reduction in the price.

How, then, might one reduce the demand for fuels?  One possibility would be to encourage more work from home.  One saw the effect of this on fuel demands (and hence prices) in 2020, when working from home was required for health reasons at the start of the Covid crisis.  Workers are now returning to the office, but perhaps our political leaders should encourage a delay in this, or at least a slower pace on the return.  But it probably could not be mandated, and indeed probably should not be simply for the sake of cutting the price of gasoline.  And while opinions differ on this, some would say that extending work-from-home even further will reduce worker productivity.

A better way to reduce fuel demands would be to provide a greater incentive to take public transit rather than drive a car for a higher share of the trips one undertakes.  One could do the following:  First, raise tax revenues that could be used for these measures by raising federal taxes on fuels by, say, $0.25 per gallon.  As was noted above, when one is operating with a vertical supply curve, as we are now, increasing taxes on fuels will not lead to higher prices for the consumer.  The crack spread would fall, but with that spread that has varied between $1.00 and $1.50 per gallon in recent months, a higher fuel tax of $0.25 per gallon would still leave that crack spread at two to three times the $0.36 it averaged before.

According to EIA data, the total supply of motor gasoline in the US averaged 9.3 million barrels per day between 2016 and 2019 (taking a four-year average, and excluding 2020 due to Covid), while diesel supply averaged 4.0 million barrels per day.  Mutliplying this sum of 13.3 million barrels per day by 42 gallons per barrel and 365 days per year, the annual supply of these fuels averaged 204 billion gallons.  Rounding this to 200 billion gallons, a tax of $0.25 per gallon would raise $50 billion on an annualized basis.

This could be used to support public transit.  Something that could be done instantly (starting literally the next day) would be simply to stop charging fares on public transit systems – including buses, rail (subways), commuter trains, and whatever.  According to the National Transit Database, in 2019 all these public transit systems generated a total of $16.1 billion in revenues, mostly from fares but including also other locally-generated revenues such as from the sale of advertising.  (Again, 2020 was an unrepresentative year due to Covid so it is better to use 2019 figures.)  The database does not separate out fares from other revenues, but even if one treated it all as fares, the $16 billion needed would be far below the $50 billion that would be generated (on an annualized basis) by increasing the federal tax on gasoline and diesel by $0.25.

Filling empty seats on buses and subways also does not cost anything.  Indeed, operating costs would in fact go down by not having to collect fares.  There are significant direct costs in collecting fares (and to ensure too much is not stolen), but one would also gain operational efficiencies.  Buses now take a relatively long time to cover some route in part because at each stop people have to line up and go one-by-one through the front door to pay their fares in some way.  Not having to take so long at each stop would allow the buses to cover their routes at a faster pace.  This would increase effective capacity or, if capacity were to be kept the same as before, one could provide that capacity with fewer buses and their drivers.

The aim is to shift people from driving their cars to taking public transit for a higher share of the trips they take.  To the extent this simply fills up some of the empty seats, there is then no additional cost.  But if ridership increases by a substantial amount (something to hope for), capacity would need to grow.  This could most easily be accommodated by additional buses.  This would cost something, but according to the National Transit Database figures, the total spent in 2019 from all sources (federal, state, and local), for all modes of public transit, for both operating and capital costs, was $79 billion.  With the $34 billion left after using $16 billion to cover fares (out of the $50 billion that the $0.25 per gallon would collect), one could cover an increase in spending on public transit of more than 40%.  This would be far more than what would be needed even with a huge increase in ridership.  But we are now going beyond the very short-term measures that could be taken to reduce fuel demand.  However, with the long-term need to reduce the burning of fossil fuels, it is good to see that even a relatively modest fee of just $0.25 per gallon of fuel could support such an expansion in public transit.

Such an approach would lead to a reduction in the demand for those fuels.  How much I cannot say with the information I have, but it should be substantial.  And as discussed before, even a small reduction in the demand for these fuels should lead to a substantial fall in their price.  That fall in price would also be of benefit to all those who purchase these fuels, including those in rural areas who are far from any public transit option.  It would be a mistake to presume that stopping the collection of fares on public transit systems would only be of benefit to the users of public transit.

D.  Concluding Remarks

The price of gas is certainly high.  Although not quite a record (when general inflation is accounted for) it is close.  This has led to a number of proposals aimed at reducing those prices.  Particularly popular politically has been to cut fuel taxes for at least some period, with this championed both by President Biden (for federal fuel taxes) and in a number of states (where several have done this already for the state-level fuel taxes).  Many also blame OPEC for managing supplies in order to drive crude oil prices higher.  To address this, there have both been major sales out of the Strategic Petroleum Reserve (of one million barrels of crude a day), as well as diplomacy to try to get others to boost their supply of oil.

Under current market conditions, however, these initiatives should not be expected to reduce prices.  The issue right now is that refineries are the binding constraint.  They are producing as much of the refined products (fuels, etc.) as they can, but limits on their capacity keep them from producing more.  One sees this in the crack spread, which jumped up in late February immediately following the Russian invasion of Ukraine.  A substantial share of Russian refinery capacity became unusable, and this served as a tipping point in an already tight market.

Under such conditions, a lower price for crude oil will not lead to lower retail prices for fuels.  While it would benefit refiners (the crack spread would widen), the prices at the pump would not be affected unless refiners were somehow then able to raise their production.  Similarly, a cut in fuel taxes should not be expected to lead to lower fuel prices at the pump.  Rather, refiners would receive a windfall as they would receive a higher share of the retail price.  Refiners are already doing extremely well, with a crack spread in recent months that has been three to four times what it averaged between 2014 and 2021.  There is no need to make this even more generous.

To reduce retail prices, one should instead reduce demand.  One measure that would do this would be simply to stop charging fares on public transit.  Inducing only some of those now driving to use transit more often could have a significant impact on prices.  This is because the demand for fuels is not terribly responsive to price (consumers in the US do not cut back on their car use all that much when prices are higher), at the same time as the supply of fuels is limited by refinery capacity (so the supply of fuels cannot go up by much despite higher prices).  With both the demand and supply curves close to vertical, a small shift left or right in the curves can have a big impact on prices.

It would not cost all that much to end the collection of transit fares either.  Not only can it be done instantly (simply stop collecting), but the total public transit systems received in 2019 in fares paid (as well as in other revenues, such as from advertising) was only $16 billion.  One could easily cover this by increasing the federal taxes on fuels.  As noted above, a cut in fuel taxes would not lead to lower fuel prices.  For the same reason, an increase in fuel taxes (within limits) would not lead to higher fuel prices.  And just a $0.25 per gallon increase in federal fuel taxes would raise roughly $50 billion on an annualized basis.

It should be kept in mind that all this is based on current market conditions.  Those conditions can change, and change suddenly – as we saw in late February with the launch of the Russian invasion.  Thus, for example, while the crack spread is currently very high, this is in part a function of where crude oil prices are.  As of the week ending July 8, the price of West Texas intermediate was $103 per barrel.  With gas and diesel prices where they were then, the crack spread was $1.02 per gallon – far above the $0.36 per gallon it had averaged between 2014 and 2021.  But at a higher price for crude oil, the crack spread would fall.  At $131 per barrel (and with gas and diesel prices where they were as of the week ending July 8), the crack spread would be back at $0.36 per gallon.  And at $146 per barrel, the crack spread would be zero.  Presumably, if crude prices approached such a level refiners would cut back on production, leading to higher gas and diesel prices.  Crude oil prices would then be the binding factor, and efforts to lower those prices (e.g. by sales out of the Strategic Petroleum Reserve, or more OPEC production) could then matter.

The point of this blog post is that that is not where we are now.  Current conditions call for a different policy response.

 

=========================================================

Annex:  Supply and Demand Curves to Show the Impacts of the Options

For those of you familiar with simple supply and demand curves, it is easy to see the impacts of the policy options discussed verbally in the text above.

The supply curve of fuels from refineries slopes upward from a curve that is relatively shallow to something increasingly steep and ultimately to vertical.  At relatively low levels of production, where there is a good deal of excess capacity in the refineries, a small rise in prices for the fuels will elicit a strong supply response.  But as production approaches the maximum capacity of what the refineries can produce (in the near term, given existing plant), there can only be little and ultimately no more production no matter how high the price goes.

The demand curve is steep.  That is, if prices rise by some amount, the quantity of fuels demanded does not fall by all that much.  The price elasticity of demand is low.

Retail taxes per gallon of fuel add to the supply cost.  That is, in the figure above, the red curve (marked S2) is what the supplies would be at some lower (possibly zero) retail fuel tax per gallon sold, while the blue curve (marked S1) is what the supply would be at some higher tax rate.  The supply curve will shift upwards.  That is, for any given quantity of supply, a higher price will be needed for that amount to be supplied.

When the supply curve is relatively shallow and upward sloping, as in the lower left of the diagram, then a cut in the tax (from the blue curve to the red), with a demand curve such as D3, will lead to some increase in supply and a significantly lower price.  The price, in the diagram, would fall from P3 to P4.  This is the logic behind the proposals, such as have been made by President Biden, for a temporary cut in federal fuel taxes.

However, this is not where current market conditions are.  Rather, refineries are operating at close to their maximum capacity, and one is in an area where the supply curve is close to vertical.  When the supply curve is vertical, a reduction in fuel taxes will simply shift that vertical curve downwards, but with one vertical curve simply sitting on top of the other vertical curve.  While a reduction in the tax per gallon will increase how much the refiner receives, after taxes, it will not lead to a higher amount being supplied (refiners cannot produce any more) nor will it lead to a lower price for consumers.  The lower taxes will simply be reflected in higher profits for the refiners.

In terms of the supply and demand curves depicted above, one would be in an area such as that depicted with the demand curve D1 with a price of P1.  If the supply curve is shifted downwards due to the tax cut (from the blue curve S1 to the red curve S2), with nothing done to affect the demand curve, then the price remains at P1.

In contrast, if the market conditions are such that the demand curve is at D1 and the supply curve is close to vertical, yielding a price of P1, a relatively modest shift in the demand curve to the left, i.e. from D1 to D2, leads to a sizeable fall in the price – from P1 to P2.  The fall in the price is large because both the demand curve and the supply curve are steep, and indeed close to vertical for the supply curve.  In such conditions, modest changes in demand can have a big impact on the price.

A shift of the demand curve shows how much demand would change (at the given price) due to a change in some underlying factor other than price.  Inducing drivers to shift to public transit by ending the charging of fares on transit systems is one such example.  There are others, such as encouraging more work from home (so no commute at all is needed).  And should the economy fall into a recession (which I see as increasingly likely in 2023), there will also be a reduction in fuel demands.  But the latter is not a cause of lower prices that one should hope for.

 

It is Time to Admit the Purple Line Was a Mistake

The Path the Purple Line Will Take – Before and The View At Rock Creek Now

A.  Introduction

The proposed Purple Line, a 16-mile light-rail line passing in an arc across parts of suburban Maryland around Washington, DC, has become a fiasco.  The State of Maryland, under Republican Governor Larry Hogan, is preparing to sign a new contract with the private concessionaire that will pay that concessionaire $3.7 billion more than had been agreed to under the existing contract.  The total cost of that contract alone (there are significant other costs on top) will now be $9.3 billion (66% more than the $5.6 billion set in the earlier contract), and the opening will be delayed by at least a further 4 1/2 years (thus doubling the originally contracted construction period – now to a total of 9 years).  And the governor is doing this with no legislative approval being sought.

The Purple Line has long been controversial – due to its high cost, the disruption it is causing to a number of suburban neighborhoods, the destruction of parkland it has been routed through, and its use of scarce resources for public transit to benefit a privileged few rather than the broader community.  There are alternatives that would not only be far more cost-efficient but also less environmentally destructive.  The project illustrates well why the US has such poor public transit and poor public infrastructure more generally, as scarce resources are channeled into politically-driven white elephant projects such as this.

In response to the announcement of the terms of the revised contract with the concessionaire, I submitted to the Washington Post a short column for its “Local Opinions” section.  They have, however, declined to publish it.  This is not terribly surprising, as the Washington Post Editorial Board has long been a strong proponent of the Purple Line, with numerous editorials pushing strongly for it to go forward.  And while the Post claims that it supports an active debate on such issues, the guest opinion columns it has published, as well as letters-to-the-editor, have been very heavily weighted in number to those with a similar view as that of its Editorial Board.

I am therefore posting that column here.  It has been slightly edited to reflect developments since it was first drafted, but has been kept in style to that of an opinion column.

Opinion columns must also be short, with the Post setting a tight word limit.  That means important related issues can not be addressed due to the limited space.  But with room here, I can address several of them below.  Finally, I will discuss the calculations behind two of the statements made in the column, as a “fact check” backing up the assertions made.  These should themselves be of interest to those interested in the Purple Line project (and in public transit more broadly), as they illustrate factors that should be taken into account when assessing a project such as this.

B.  The Column Submitted to the Washington Post

This is the column submitted to the Post, with some minor changes to reflect developments since it was first drafted:

               It is Time to Admit the Purple Line was a Mistake

Governor Hogan has re-negotiated the contract with the private concessionaire that will build and operate the 16-mile long Purple Line through suburban Maryland.  The Board of Public Works has approved it, and despite an extra $3.7 billion that will be spent the Maryland legislature will have no vote.  The private concessionaire will now be paid $9.3 billion, a 66% increase over the $5.6 billion cost in the original contract.  And this is just for the contract with the concessionaire.  The total cost, including contracts with others (such as for design and engineering work) as well as direct costs at the Maryland Department of Transportation (MDOT), is likely well over $10 billion.

The amount to be paid to the concessionaire for the construction alone will rise to $3.4 billion from the earlier $2.0 billion, an increase of 70%.  And even though the construction is purportedly halfway complete (with $1.1 billion already spent), the remaining amount ($2.3 billion) is larger than the original total was supposed to be.  And the amount being paid to the private contractors for the construction will in fact be even higher, at $3.9 billion, once one includes the $219 million MDOT has paid directly to the subcontractors in the period since the primary construction contractor withdrew, and the $250 million paid to that primary contractor in settlement for the additional construction expenses it incurred.  That $3.9 billion is close to double the $2.0 billion provided for in the original contract.  In addition, the project under the new contract will require an extra 4 1/2 years (at least) before it is operational, doubling the time set in the original contract to 9 years.  Even though the project is purportedly halfway built, the remaining time required will equal the time that was supposed to have been required under the original plan for the entire project.

The critics were right.  They said it would cost more and take longer than what Maryland asserted (and with supposedly no risk to the state due to the “innovative” contract).  It also shows that it is silly to blame the opponents of the project.  The lawsuit delayed the start of construction by less than 9 months.  That cannot account for a delay of 4 1/2 years.  Furthermore, the state had the opportunity during those 9 months to better prepare the project, acquire the land required, and finalize the engineering and design work.  Construction should then have been able to proceed more smoothly.  It did not.  It also shows that Judge Leon was right when he ruled that the project had not met the legal requirements for being adequately prepared.

Even the state’s own assessment recognized that such a rail line was marginal at best at the costs originally forecast.  With the now far higher costs, no unbiased observer can deny that the project is a bad use of funds.  The only possible question is whether, with what has already been spent, the state should push on.  But so far only $1.1 billion has been spent on the construction, plus the state agreed to pay the former construction company the extra $250 million when it quit the project.  Thus close to $8 billion (plus what the state is spending outside of the contract with the concessionaire) would be saved by stopping now.

There are far better uses for those funds.  A top priority should be to support public transit in Montgomery and Prince George’s countries.  Even at the originally contracted cost for the Purple Line there would have been sufficient funds not only to double capacity on the county-run bus systems (doubling the routes or doubling the frequency on the routes or some combination), but also to end charging any fares on those buses.  Those bus systems also cover the entire counties, not simply a narrow 16-mile long corridor serving some of the richest zip codes in the nation.  In particular, better service could be provided to the southern half of Prince George’s, the location of some of the poorer communities in the DC area and where an end to bus fares would be of particular benefit.

Covid-19 has also now shown the foolishness of spending such sums on new fixed rail lines.  DC area Metro ridership is still 80% below where it was in 2019.   Rail lines are inflexible and cannot be moved, and in its contract the state will pay the concessionaire the same even if no riders show up.  Who knows what will happen to ridership in the 35 years of this contract?  In contrast, bus routes and frequency of service have the flexibility to be adjusted based on whatever develops.

It is time to cut our losses.  Acknowledge it was a mistake, don’t sign the revised contract, and use the funds saved to provide decent public transit services to all of our residents.

C.  Additional issues

a)  The Cost of Not Keeping the Original Construction Contractor

Media coverage of the proposed new contract has focussed on the overall $9.3 billion cost (understandably), as well as the cost of the construction portion alone.  The figure used for that construction cost has been $3.4 billion, a 70% increase over the originally contracted $2.0 billion cost.

But as noted in the column I drafted above, that $3.4 billion excludes what MDOT has paid directly to the subcontractors who have continued to work on the project since September 2020 (under the direct supervision of MDOT) after the original primary contractor (Fluor, a global corporation with projects on six continents) exited.  According to a report by MDOT in January 2022, $219 million was paid directly by MDOT for this work, and this will be in addition to the $3.4 billion to be paid to the concessionaire.  One should also add in the $250 million Maryland has agreed to pay the original primary contractor in the settlement for its claims that it incurred an additional $800 million in construction expenses on the project – expenses that were the fault of the state from an inadequately prepared project.  That $250 million was for construction costs incurred, and should be included as part of the overall construction costs that MDOT is paying the concessionaire.  The total to be paid for the construction (if there are no further cost increases, which based on the experience so far cannot be guaranteed) is thus in fact $3.9 billion.  This is close to double the original contracted cost of $2.0 billion.

This also raises another issue, which remarkably does not appear to have been discussed (from all that I have read).  The original contractor in 2020 had requested an additional $800 million in compensation for extra costs incurred in the project that it argued were the fault of the state.  One can debate whether this was warranted and whether it was the fault of the state or the contractor, but the amount claimed was $800 million.  Thus, had the state agreed, the total cost would then have been $2.8 billion, up from the originally contracted $2.0 billion.  The state rejected this, however, and then congratulated itself for bargaining the $800 million down to “only” $250 million.

But now we see that the overall amount to be paid the private firms building the rail line will be $3.9 billion.  Fluor was evidently right (even conservative) in its claim that building the project will cost more.  But the $3.9 billion it will now cost is $1.1 billion more than the $2.8 billion they would have paid had the state agreed to cover the $800 million (which probably could have been bargained down some as well).  This hardly looks like smart negotiating by Governor Hogan and his state officials.

Put another way, state officials refused to pay an extra $800 million for the project, insisting that that cost was too high.  They then negotiated a contract where instead of paying $800 million more they will pay $1.9 billion more – for the same work.  And then they sought praise for negotiating a new agreement where they will pay “only” an extra $1.9 billion.

Furthermore, the re-negotiated contract will not only pay $1.9 billion more for the construction, but also higher amounts for the subsequent 30 years when the concessionaire will operate and maintain the line.  Maryland had agreed to pay a total of $2.3 billion for this over the 30 years in the original 2016 contract, but in the re-negotiated contract will now pay $2.6 billion, an increase of $300 million.  Governor Hogan had earlier asserted that under its “innovative” PPP contract, the state would not have to cover any cost increases for the rail line operations over those 30 years – but now it does.  In addition, due to the now far higher construction costs and the proportionately much higher share of those costs that will be funded by borrowing (as the up-front grants to be provided will be largely the same – $1.36 billion will now be provided, vs. $1.25 billion before), the total financing costs over the life of the contract will now be $2.8 billion versus $1.3 billion before, an increase of $1.5 billion.  Thus the total contract will now cost $9.3 billion versus $5.6 billion before, an increase of $3.7 billion (which equals the $1.9 billion on construction + $0.3 billion on operations + $1.5 billion on financing).

It is difficult to see how there is any way this can be interpreted as smart negotiating.

b)  Don’t Blame the Lawsuit for the Problems

The politicians responsible for the Purple Line, starting with Governor Hogan, blame the lawsuit brought by opponents of the Purple Line for all the problems that followed.  This is simply wrong, and indeed silly.  The ruling by Judge Richard Leon delayed the start of construction by less than 9 months.  This cannot account for a delay that will now be at least 4 1/2 years (assuming no further delays).  Nor can it account for a project cost that is now $3.7 billion higher.

Judge Leon ruled in August 2016 that the State of Maryland had not fulfilled the legal conditions required for a properly prepared project.  The primary issue was whether a project such as this, with the unavoidable harm to the environment that a new rail line will have, is necessary to provide the transit services needed in the corridor.  Could there be other options that would provide the services desired with less harm to the environment?  If so, the law requires that they be considered.  The answer depends critically on the level of ridership that should be expected, and the State of Maryland argued that only a rail line would be able to handle the high ridership load they forecast.  Many of the Purple Line riders would be transferring from and to the DC Metrorail lines it would intersect, and the State of Maryland claimed that the DC Metrorail system (just Metro, for short) would see a steady rise in ridership over the years and thus serve as a primary draw for Purple Line riders.

Judge Leon observed that in fact Metro ridership had been declining in the years leading up this case (2016), and ruled that Maryland should look at this issue and determine whether, based on what was then known, a less environmentally destructive alternative to the Purple Line might in fact be possible.  If Maryland had complied with this ruling, they could have undertaken such a study and completed it within just a few months.  There would have been little surprise if such a study, under their own control, would have concluded that the Purple Line was still warranted.  The judge would have accepted this, and they could then have proceeded, with little to no delay.  Construction had only been scheduled to begin in October 2016.

Instead, the State filed numerous motions to reverse the ruling and to be allowed to proceed with no examination of their ridership assumptions.  They argued in those motions that there would be a steady rise in Metro ridership over time, and that by the year the Purple Line would open (then expected to be in 2022) Metro ridership would have been growing at a steady pace for years, which would then continue thereafter.  When Judge Leon declined to reverse his ruling, the State appealed and then won at the Appeals Court level.  The judges in the Appeals Court decided that the judicial branch should defer to the executive branch on this issue.  Construction then began in August 2017.  The Purple Line contractors said that they were delayed by 266 days ( = 8.7 months) as a result of Judge Leon’s ruling.

We now know that Judge Leon was in fact right in raising this concern with the prospects for Metro ridership.  Ridership on the system had in fact been falling for a number of years leading up to 2016, and it has continued to fall since then.  Metro ridership peaked in 2008, fell more or less steadily through 2016, and then continued to fall.  Ridership in 2016 was 14% below where it had reached in 2008 (despite the Silver Line opening with four new stations in 2015), and then was even less than 2016 levels in 2019.  And all this was pre-Covid.  Metrorail ridership then completely collapsed with the onset of Covid, with ridership in 2020 at 72% below where it was in 2019 and in 2021 at 79% below where it was in 2019.

Judge Leon was right.  Even setting aside the collapse in ridership with the onset of Covid, Metro ridership declined significantly and more or less steadily for more than a decade.  It was not safe to assume (as the state insisted in its court filings would be safe to assume) that Metro ridership would resume its pre-2008 upward climb.  And now we have seen not only the collapse in Metro ridership following from Covid, but also the near certainty that it will never fully recover due to the work-from-home arrangements that became common during the Covid crisis and are now expected to continue at some level.

In addition and importantly, while the Purple Line contractor noted that the judicial ruling delayed the start of construction by 266 days, this does not mean project completion should have been delayed by as much.  As Maryland state officials themselves noted, while the ruling meant construction could not start, the state could (and did) continue with necessary preparatory work, including final design work, acquisition of land parcels that would be needed along the right of way, and the securing of the necessary clearances and permits that are required for any construction project.  The state was responsible for each of these.  With the extra 9 months they should have been able to make good progress on each, and with this then ensure that the project could proceed smoothly and indeed at a faster pace once they began.

This turned out not to be the case.  Despite the extra 9 months to prepare, the Purple Line contractors cited each of these as major problems causing delays and higher costs.  Final designs were not ready on time or there had to be redesigns (as for a crash wall that has to be built for the portion of the Purple Line that will run parallel to CSX train tracks); state permits were delayed and/or required significant new expenditures (such as for the handling of water run-off); and the state was late in acquiring “nearly every” right of way land parcel required (there were more than 600) – and “by more than two years in some cases”.

An extra 9 months for preparation should have led to fewer such issues.  That they still were there, despite the extra 9 months, makes one wonder what the conditions would have been had they started construction 9 months earlier.  The extra time to prepare the project – where these were later revealed still to be major problems – likely saved the project money compared to what would have been the case had they started construction earlier.  It simply makes no sense now to blame that extra 9 months for the difficulties when they in fact had an extra 9 months to work on them.

c)  Diversion of MARC Revenues to Get Around Maryland’s Public Debt Limits

Under the Purple Line contract, the State of Maryland will be obliged to pay the concessionaire certain set amounts over 35 years, starting with a payment of $100 million when operations start (in a planned 4 1/2 years from now), but especially then for the following 30 years when the concessionaire will operate the line.  The state will be obliged to make those payments for those 30 years on the sole condition that the rail line is available to be operated (i.e. is in working order).  Hence those payments are called “availability payments”.  The payments will be the same regardless of ridership levels.  Indeed, they will have to be made (and in the same amount) even if no riders show up.  A major share of the availability payments will be made up of what will be required to cover the principal and interest on the loans that the concessionaire will be taking out to finance the construction of the project, with the repayment then by the state through the availability payments.  The concessionaire is in essence borrowing on behalf of the state, and the loans will then be repaid by the state via the concessionaire.

These long-term budget obligations are similar to the obligations incurred when the state borrows funds via a bond being issued.  Indeed, this can hardly be disputed for the borrowing being done by the concessionaire to finance the construction, with the state then repaying this through the availability payments.  it is also, at 35 years, a longer-term financial obligation than any bond Maryland has ever issued.  Governor Hogan will be tying the hands of future governors for a very long time, as failure to repay on the terms he negotiated would be an event of default.

Due to concerns of excessive government borrowing undermining finances, many states have set limits on the amount they can borrow.  In Maryland, the state has set two “capital debt affordability ratios”, which limit outstanding, tax-supported, state debt to less than 4% of Maryland personal income and the debt service that will be due on this debt to less than 8% of state tax and other revenues.

If the 35-year long Purple Line obligations were treated as state debt, then there could be a problem of Maryland running close to, and possibly exceeding, these debt affordability ratios.  This is discussed in further detail in an annex at the end of this blog post, with illustrative calculations.  Exceeding those limits would be a significant issue for the state, and might conceivably put it in violation of conditions written into the contracts for its outstanding state bonds.  To avoid this, or even if the Purple Line obligations would bring it closer to but not over those limits, Maryland would need to limit its public sector borrowing, postponing other projects and programs due to the limited borrowing space that the Purple Line has used up.

The issue is not new.  It already arose in the contract signed in 2016.  But it will be even more important now due to the higher cost of the concession  – $9.3 billion to be paid to the concessionaire vs. $5.6 billion before.

Lawyers can debate whether the payment obligations (or a portion of them, e.g. the portion directly tied to the debt incurred by the concessionaire on behalf of the state) should or should not be included in the state’s capital debt affordability ratios.  But to forestall such a debate, MDOT has chosen to create a special trust account from which all payments for the Purple Line would be made.  That trust would be funded by Purple Line fare revenues (whatever they are) and grant funds received for the project (primarily from federal sources).  But MDOT acknowledges that such funding would not suffice for the financial obligations being incurred for the Purple Line, at least for some time.  And if direct support to cover this was then provided from the Maryland state budget, where revenues come primarily from taxes, the Purple Line obligations would be seen as tax-supported debt and hence subject to the borrowing limits set by the capital debt affordability ratios.

So instead of openly providing funding directly from the state budget, they will channel fare revenues collected on MARC (the state-owned commuter rail system) in the amounts necessary to cover the payment obligations on the Purple Line.  But MARC does not run a surplus.  Like other commuter rail lines it runs a deficit.  Each dollar in MARC fares channeled to cover Purple Line payment obligations thus will increase that MARC deficit by a dollar.  But then, for reasons that make little sense to an economist but which a lawyer might appreciate, those higher MARC deficits can be covered by increased funding from the state budget without this impacting the state’s capital affordability limits.  The identical payments if sent directly to cover the Purple Line obligations, however, would be counted against those ratios.

But this is just a shell game.  The funding to cover the Purple Line payment obligations are ultimately coming from the state budget, and routing it via MARC transfers simply serves to allow the state to bypass the capital debt affordability limits.  It also reduces transparency on how the Purple Line costs are being covered.

Nor are the agencies that assign ratings to Maryland state bonds being fooled by this.  S&P, for example, noted specifically that it will take into account the payment obligations on the Purple Line when they compute for themselves what the capital debt affordability ratios in fact are.

d)  Role (or Lack of It) of the State Legislature

Under the new contract Governor Hogan and his administration have negotiated, a total of $9.3 billion will be paid to the concessionaire, or $3.7 billion more than the $5.6 billion that was to be paid under the original contract.  The state legislature will apparently have no say in this.  While it will bind future administrations to make specified payments over a 35 year period, with payments that must be made regardless of ridership or any factor the state has control over (the rail line needs merely to be “available”), the only recognized check on this is apparently a vote in the Board of Public Works.  But there are only three members on this Board, only two votes are required for approval, and the governor has one of those two votes.  The legislature has no role.

I find this astonishing.  The state legislature is supposed to set the budget, but no vote will be taken on whether the further $3.7 billion should be spent.  Indeed, it appears the legislature would have no role regardless of how much the current governor is binding his successors to pay (Governor Hogan will be long out of office when the payments are due), nor for how long.  Suppose it was twice as much, or ten times as much, or whatever.  And while this commitment will be for 35 years to 2056 (five years past what was in the original contract), it appears the same would apply if the revised contract were extended to 50 years, or 100 years, or whatever.  Under the current rules, it appears that the legislature has accepted that the governor can commit future administrations to pay whatever he decides and for as long as he decides, with just the approval of the Board of Public Works.

This is apparently a consequence of the state law passed in 2013 establishing the process to be followed for state projects that would be pursued via a Public-Private Partnership (PPP) approach.  The Purple Line is the first state project being pursued on the basis of that 2013 legislation, with the legislature approving also in 2013 the start of the process on the Purple Line.  This legislative approval was provided on the basis of cost estimates provided to it at the time.  MDOT then issued a Request for Qualifications in November 2013 to identify interested bidders, a Request for Proposals in July 2014, and received proposals from four bidders in November and December 2015.  Following review and final negotiations, MDOT announced the winning bidder on March 1, 2016.  Only then did they know what the cost (under that winning bid) would be, and the state legislature was given 30 days to review the draft contract (of close to 900 pages) during which time they could vote not to approve.  But no vote taken would be deemed approval.  Then, with just the approval of the Board of Public Works as well (received in early April 2016), MDOT could sign the contracts on behalf of Maryland.

However, there will be no such review by the legislature of any amendments to that contract.  Amendments apparently require nothing more than the approval of the Board of Public Works, and with that sole approval, the governor is apparently empowered to commit future administrations to pay whatever amount he deems appropriate, for as many years as he deems appropriate.  The increase in the future payment obligations in this case will be $3.7 billion, but apparently it could be any amount whatsoever, with just the approval of the Board of Public Works.

Based on this experience, one would think that the legislature would at a minimum hold public hearings to examine what went wrong with the Purple Line, and what needs to be done to ensure the legislature retains control of the state budget.  The current legislation apparently gives the governor close to a blank check (requiring only the approval of the Board of Public Works) to obligate future administrations to pay whatever amount he sees fit, for as many years as he sees fit.

Central also to any legislative review of a proposed expenditure is whether that expenditure is warranted as a good use of scarce public resources.  One can debate whether the Purple Line was warranted at the initial cost estimates.  As will be discussed below, at those initially forecast costs even the state’s own analysis indicated it was at best marginal (and inferior to alternatives).  But even if warranted at the then forecast costs, it does not mean the project makes sense at any cost.  Based on what we now know will be a far higher cost, no unbiased person can claim that the Purple Line is still (if it ever was ) a good use of public resources.

Yet remarkably, it does not appear that any assessment was done by any office in Maryland government of whether this project is justified at the now much higher costs.  The issue simply did not enter into the discussion – at least in any discussion that has been made public.  Rather, at the Board of Public Works meeting on the project, Governor Hogan praised MDOT staff for continuing to push the project forward despite the problems.  Indeed, the higher the increase in cost for the project, the more difficult it would be to proceed, and hence the more the staff should be commended (in that view) for nevertheless succeeding in pushing the project through.  This is perverse.

Legislative review is supposed to look at such issues and to set overall budget priorities.  Yet under the PPP law passed in 2013, the legislature apparently has no role to review and consider whether an amended expenditure on such a project is a good use of the budget resources available.

D.  Fact Checks

a)  The Lack of Economic Justification for the Purple Line

The column includes the statement:

Even the state’s own assessment recognized that such a rail line was marginal at best at the costs then envisaged.  With the now far higher costs, no unbiased observer can deny that the project is far from justified.

This statement is based on the results of the state’s analysis reported in the Alternatives Analysis / Draft Environmental Impact Statement, released in September 2008.  The Alternatives Analysis looked at seven options to provide improved public transit services in the Purple Line corridor – an upgrading of existing bus services (labeled TSM for Transportation System Management), three bus rapid transit options (low medium, and high), and three light rail options (low, medium, and high).  All would provide improved public transit services in the corridor.  The question is which one would be best.

The summary results from the analysis are provided in Chapter 6, and the primary measure of whether the investment would be worthwhile is the “FTA cost-effectiveness measure” – see tables 6-2 and 6-3.  The Federal Transit Administration (FTA) cost-effectiveness measure is calculated as the ratio of the extra costs of the given option (extra relative to what the costs would be under the TSM option, and with both annualized capital costs and annual operational and maintenance costs), to the extra annual hours of user benefits of that option relative to the TSM option.  That is, it is a ratio of two differences – the difference in costs (relative to TSM) as a ratio to the difference in benefits (again relative to TSM).  Thus it is a ratio of costs to benefits, and a higher number is worse.  Hours of user benefits are an estimate of the number of hours saved by riders if the given transit option is available, where they mark up those hours saved by a notional factor to account for what they say would be a more pleasant ride on a light rail line (which biases the results in favor of a rail line but, as we will see, not by enough even with this).

The FTA issues guidelines classifying projects by their cost-effectiveness ratios.  For FY2008 (the relevant year for the September 2008 Alternatives Analysis), the breakpoints for those costs were (see Table II-2 in Appendix B of the FTA’s FY2008 Annual Report on Funding Recommendations):

High (meaning best) $11.49 and under
Medium-High $11.50 – $14.99
Medium $15.00 – $22.99
Medium-Low $23.00 – $28.99
Low (meaning worst) $29.00 and over

The Alternatives Analysis estimated that the Medium Light Rail Line option would have a cost-effectiveness ratio of $22.82.  This would place it in the Medium category for the FTA cost-effectiveness measures, but just barely.  This was important, as the FTA will very rarely consider for federal grant funding a project in its Medium-Low category, and never in the Low category.

The other two light rail options examined had worse cost-effectiveness ratios ($26.51 and $23.71 for the Low and High options respectively) that would have placed them in FTA’s Medium-Low cost-effectiveness category, and thus highly unlikely to be accepted by the FTA for funding.  Not surprisingly, the Governor of Maryland (O’Malley at the time) selected the Medium Light Rail option as the state’s preferred option, as the other two light rail options would likely have been immediately rejected, while the Medium Light Rail choice would have been within the acceptable limits – although just barely so.  And while in principle they chose the Medium Light Rail option, they then added features (and costs) to it that brought it closer to what had been the High Light Rail Option, while not re-doing the cost-effectiveness analysis.

Maryland should also have considered any of the three Bus Rapid Transit options, as their cost-effectiveness measures were uniformly better than any of the light rail options (with cost-effectiveness ratios of $18.24, $14.01, and $19.34 for the Low, Medium, and High options respectively).  They were better even without the scaling-up of user benefits (by a notional factor for what was claimed would be a more pleasant ride) that biased the results in favor of the light rail options.  And most cost-effective of all would have been a simple upgrading of regular bus services, introducing express lines and other such services where there is a demand.

These were all calculated at the costs as estimated in 2008.  We now know that the costs for the light rail line option chosen will be far higher than what was estimated in 2008.  That cost then was estimated to be $1.2 billion to build the line, and an annual $25.0 million then for operations and maintenance.  Adjusting these figures for general inflation from the prices of 2007 (the prices used for these estimates) to those of December 2021 would raise them by 34%, or to $1.6 billion for the capital cost and $33.5 million for the annual operational and maintenance costs.  But under the new contract, the capital cost will be $3.9 billion, or 2.4 times higher than estimated in 2008 (in end-2021 prices).  Also, the annual operational and maintenance costs (including insurance) in the new contract will be $2.6 billion over 30 years.  This payment will be adjusted for inflation, and the $2.6 billion reflects what it would be at an assumed inflation rate of 2% a year.  One can calculate that at such a 2% inflation rate, the annual payment over the 30 years in the prices of end-2021 would be $58.0 million, or 73% higher than the $33.5 million had been forecast earlier (also at end-2021 prices).

Putting the capital cost in annualized terms in the same way as was done in the Alternatives Analysis report, and adding in the annual operational and maintenance costs, the overall costs under the new contract (with all in end-2021 prices) is 2.3 times higher than what was forecast in 2008, when the Medium Light Rail option was chosen.  To be conservative, I will round this down to just double.  To calculate what the FTA cost-effectiveness measures would have been (had the forecast costs been closer to what the new contract calls for), one also needs ridership forecasts.  While we know that those forecasts are also highly problematic (as discussed in this earlier blog post, they have mathematical impossibilities), for the purposes here I will leave them as they were forecast in the Alternatives Analysis.

Based on this, one can calculate that the FTA cost-effectiveness measure would have jumped to $50.55 had the capital and operating costs been estimated closer to what they now are under the new contract.  This would have put the Purple Line far into the Low category for cost-effectiveness (far above the $29.00 limit), and the FTA would never have approved it for funding.  And at more plausible ridership estimates, the ratio would have been higher still.

b)  For the Cost of the Purple Line, One Could Double Bus Services in Suburban Maryland, and Stop Charging Fares

Resources available for public transit are scarce, and by spending them on the Purple Line they will not be available for other transit uses.  The Purple Line will serve a relatively narrow population – those living along a 16-mile corridor passing through some of the richest zip codes in the country, providing high-end services to a relatively few riders.  The question that should have been examined (but never was) was whether the resources being spent on the Purple Line could have been used in a way that would better serve the broader community.

A specific alternative that should have been considered would have been to use the funds that are being spent on the Purple Line instead to support public transit more broadly in Montgomery and Prince George’s Counties.  What could have been done?  The alternatives can then be compared, and a determination made of which would lead to a greater benefit for the community.  Only with such a comparison can one say whether a proposed project is worthwhile.

Specifically, what could be done if such resources were used instead to support the local, county-run bus services in Montgomery and Prince George’s Counties (Ride-On and The Bus respectively)?  They already carry twice as many riders as what the Purple Line would have carried in the base period examined (according to its optimistic forecasts), had it been in operation then.  As we will see below, with the funds that the State of Maryland will make in the availability payments on the Purple Line (and net of forecast Purple Line fare revenues), one could instead end the collection of all fares on those bus systems and at the same time double the size of those systems (doubling the routes or doubling the frequency on the current routes, or, and most likely, some combination of the two).  With unchanged average bus occupancy, they could thus serve four times the number of riders that the Purple Line is forecast (optimistically, but unrealistically) to carry.

The services would also be provided to the entire counties, not just to those living along the Purple Line’s 16-mile corridor.  Especially important would be service to the southern half of Prince George’s County, where much of its poorer population lives.  The Purple Line will not be anywhere close to this.  Ending the collection of fares would also be of particular value to these riders.

For the comparison to the cost of running the county-run bus systems, I used data on their operating costs, capital costs, and fare revenues from the National Transit Database, which is managed by the Federal Transit Administration of the US Department of Transportation.  The data was downloaded on February 1, 2022.  The data is available through 2020, but I used 2019 figures so as not to be affected by the special circumstances of the Covid-19 pandemic.

The bus system costs in 2019, along with what the Purple Line costs will be, are:

(in millions of $)

County-Run Bus Systems (for 2019):
Operating costs $157.6
10-year average K costs $17.1
  Total costs $174.7
Fares collected $22.0
  Total to double capacity and no fares $196.7
Purple Line:
Annual availability payments $240.0
Less fares collected (forecast) $45.3
  Net Costs $194.7

The two bottom-line figures basically match, at around $195 million.  The net payments that will be made on the Purple Line over its 30-year life would be $194.7 million, based on the announced availability payment averaging $240.0 million per year less forecast average annual fares to be collected.  That average fare forecast is undoubtedly optimistic (as the ridership forecasts are optimistic), and is based on what was provided in 2016 when the original contract was discussed with the legislature.  I have not seen an updated forecast, but MDOT staff stated (at the Board of Public Works meeting on January 26 to discuss and vote on the new contract) that fares would not be changed from what was planned before.

The cost of doubling the size of the county-run bus systems would have been $157.6 million for the operating cost (based on the actual cost in 2019) plus $17.1 million for the capital cost (based on the 10-year annual average between 2010 and 2019, as these expenditures fluctuate a good deal year to year), or a total of $174.7 million.  It is assumed that government will continue to spend what it is spending now to support these bus systems, so the extra funding needed for doubling the systems would be those costs again (for that second half), plus what is received in fare revenues in the system now (the $22.0 million) as fares would no longer be collected.  Thus the net cost would be $196.7 million, very close to the amount that could be covered by what will be provided on a net basis to the Purple Line (and assuming, optimistically, fares averaging $45.3 million a year).

In addition to this, a total of $1.36 billion will be provided in grants to the Purple Line.  At the lower cost of the earlier, 2016, contract, a portion of those grant funds ($1.25 billion before) would have been needed to cover a share of the costs of doubling the capacity of the bus systems and ending the collection of fares.  One could in principle have invested those grant funds and at a reasonable interest rate have generated sufficient funds to close the remaining gap.  But with the now far higher costs of the renegotiated contract, there would be no need for a share of those grant funds for this, and they could instead be used to provide funding for other high-priority transit needs in the region.

E.  Conclusion

The Purple Line has long been a problematic project, and with the now far higher costs in the renegotiated contract with the concessionaire, can only be described as a fiasco.  After rejecting a demand from the contractor to pay $800 million more to complete the construction of the rail line, they will instead now pay $1.9 billion more to a total of $3.9 billion for the construction alone, or close to double the originally negotiated cost of $2.0 billion.  They will also now pay more for the subsequent operation of the line.  It is all a terribly wasteful use of the scarce funds available for public transit, and comes with great environmental harm on top.  Funds that will be spent by the state under this concession contract could have been far better used, and far more equitably used, by supporting the public transit systems that serve the entire counties.

Despite the much higher costs, there does not appear to have been any serious assessment of whether the Purple Line can be justified at these higher costs.  At least there has not been any public discussion of this.  Rather, MDOT staff appear to have been directed to do whatever it takes, and at whatever the cost it turns out to be, to push through the project.  But that is in fundamental contradiction to basic public policy.  A project might be warranted at some low cost, but that does not then mean it is still warranted if it turns out the cost will be far higher.  That needs to be examined, but there is no evidence that there was any such examination here.

We should also now recognize as obvious that forecasts of ridership on fixed rail lines are uncertain.  Ridership on the DC Metro rail lines not only fell, more or less steadily, over the decade leading up to 2019, but then collapsed in 2020 and 2021 due to the Covid crisis.  Ridership in 2021 was almost 80% below what it was in 2019.  And it is highly unlikely that Metrorail ridership will ever recover to its earlier levels, as many of the former commuters on the system will now be working from home for at least part of the workweek.

Despite this, Governor Hogan has adamantly refused to look at alternatives to building a new fixed rail line, with this to be paid for via a 35-year long concession with private investors that will tie his successors to making regular availability payments regardless of whatever ridership turns out to be, and regardless of any other developments that might lead to more urgent priorities for the state’s budget resources.  The issue is not only that the ridership forecasts on the Purple Line are highly problematic, with mathematical impossibilities and other issues.  It is also, and more importantly, that any such ridership forecasts are uncertain.  Just look at what happened with Covid.  It was totally unanticipated but led ridership to collapse almost literally overnight.  And the effects are still with us, almost two years later.

The fundamental failure is the failure to acknowledge that any such forecasts are uncertain, and highly so.  There might be future Covids, and also other future events that we have no ability to foresee or predict.  For precisely this reason, it is important to design systems that are flexible.  A rail line is not.  Once it is built (at great cost), it cannot be moved.  Bus routes, in contrast can be shifted when this might be warranted, as can the frequency of services on the routes.

None of this seems to have mattered in the decisions now being taken.  As a consequence, and despite billions of dollars being spent, we do not have the transit systems that provide the services our residents need.

 

 

=========================================================

Annex:  Details on the Diversion of MARC Revenues to Get Around Maryland’s Public Debt Limits

The State of Maryland follows a policy to limit its public borrowing so that state debt does not become excessive.  Specifically, it has set two “capital debt affordability ratios”:

1) Keep the stock of tax-supported state debt below 4% of personal income in the state;

and 2)  Keep debt service on tax-supported state debt below 8% of state revenues.

I am not sure whether these are limits have been set by statute, but as policy they will in any case be reflected in the state bond ratings.  It is also possible that representations, and perhaps even covenants, have been made in the Maryland state bond contracts stating the intention of the state to keep to them.  If so, then violation of those limits could have consequences for those bonds, possibly putting the state technically in default.

The commitments Governor Hogan will be making in signing the concession contracts for the Purple Line are in essence the same as commitments made when the state issues a bond and agrees to pay amortization and interest on that bond as those payments come due.  For the Purple Line, the private concessionaire will similarly be borrowing funds, but the State of Maryland will then have the obligation under the contract to repay that borrowing through the availability payments to be paid to the concessionaire for 30 years.  In addition to repaying (with interest) the borrowings made by the concessionaire, the availability payments will also cover the operational, maintenance, and similar costs over the 30-year life of the contract during which the concessionaire will operate the line.

Under the original contract, signed in 2016, these payments were expected to average $154 million per year for 30 years.  Under the new contract, they are expected to average $240 million a year.  One can debate whether all of the availability payment (which includes payment for the operations and maintenance) or simply some share of these payments should be considered similar to debt, but the payment obligation is fundamentally the same.  Governor Hogan is committing future governors (up until 2056) to make these payments, with the sole condition that the concessionaire has ensured the rail line is available to be used (hence the label “availability payments”).  In particular, they will be obliged to make these payments regardless of what ridership turns out to be, or indeed whether any riders show up at all.  That risk is being taken on fully by the state and is not a concern of the concessionaire (who, indeed, will find things easier and hence preferable the fewer the number of riders who show up).

These availability payments have all the characteristics of a debt obligation.  But if it were treated as state debt, it would have to be included in the capital debt affordability limits, and this could affect the amount that the state could borrow for other purposes.  One can debate precisely what obligations to include and the timing of when they should be included, but purely for the sake of illustration, let’s use the 2016 contract amounts and assume that the obligation to be repaid would have had a capital value of $2.0 billion (equal to the then planned construction cost, minus grants received for it, but plus the present discounted value of non-debt operating and other costs that have been obligated).  Assume also this would have applied in 2017.  Based on figures in the November 2021 report of Maryland’s Capital Debt Affordability Committee (see Table 1 on page 26), the ratio of tax-supported state debt to Maryland personal income was 3.5% in 2017, or below the 4% limit.  However, if the full $2.0 billion from the Purple Line would have been added in 2017, following the contract signing in 2016, that ratio would have grown to 4.1%.

Similarly, the Capital Debt Affordability Committee report indicates (Table 2A on page 28) that debt service on tax-supported public debt in 2017 was 7.5% of state revenues.  If one were to add the full annual $154 million payment that would be due (under the original contract) for the Purple Line already in 2017 (too early, as it would not be due until construction is over, but this is just for illustration), the debt service ratio to state revenues would have risen from 7.5% without the Purple Line commitments to 8.2% with it – above the 8.0% limit.  Of the $154 million, about two-thirds would have been used to repay the funds borrowed to pay for the construction (plus for the equity, which was a small share of the total).  If one argued that only these payments on the debt incurred (and the similar equity cost) should be included, and not also the 30-year commitment to cover the operational and similar other costs, then the ratio would have risen to 7.98% if it applied in 2017 – basically at the 8.0% limit.

Again, these figures are simply for illustration, and the actual additions in 2017 would have been less and/or applied only in later years.  But as a rough indication, they indicate that the Purple Line debt and payments due would be materially significant and hence problematic.

it was thus important that MDOT structure these payment obligations in such a way that it could argue that they are not for “tax-supported public debt”.  This would be the case, for example, if the fare revenues from ridership on the Purple Line would suffice to cover the debt service and other payment obligations incurred.  But even MDOT had to concede the Purple Line revenues would not suffice for that in at least the early years, although it did assert (unconvincingly) that ultimately they would.

MDOT therefore established a separately managed trust for the Purple Line, which would be used to make the payments due and into which it would direct not simply Purple Line fare revenues and grants to be received for the project (primarily from federal sources), but also sufficient revenues from the MARC commuter rail line (operated by MDOT) to make the payments.  It argued also that only the debt service component of the availability payment would have to be included (about two-thirds of the total payment obligation in the 2016 contract), with the operations, maintenance, and other such costs not relevant to the capital debt affordability ratios (despite being a long-term, 30-year, commitment).  The State Treasurer, Nancy Kopp in 2016, ruled that this structure was acceptable and that Purple Line debt should thus not count against the state’s capital debt affordability limits.

But while deemed not applicable for the capital debt affordability limits, the immediate question that arises is what then happens to MARC?  Commuter rail lines in the US do not run a surplus, and require subsidies from a government budget to remain in operation.  MARC is no exception.  If a portion of MARC revenues are diverted to cover payments on Purple Line debt, then MARC’s deficit will rise by that amount and Maryland’s subsidies to MARC will have to rise by that same amount.  And those subsidies will come from state tax revenues.  Hence state tax revenues are in reality covering the Purple Line debt payments, and routing it via MARC does not change that reality.  At a minimum, transparency is being lost.

Furthermore, and as noted before, the state bond rating agencies have made it known that they are fully aware of what is going on, and will include these Purple Line obligations into their calculations.  S&P explained in May 2016 that upon the signing of the Purple Line contract, they will include the net present value of the payments to be made by the state during the construction period in their calculations of the state’s tax-supported debt ratios, and that once operations begin will include in the ratios the full availability payments net of fare revenues collected on the Purple Line only.

Maryland’s payment commitments under the revised Purple Line contract are now expected to average $240 million a year, far above the $154 million expected before.  MDOT has once again made its case with the new State Treasurer (Dereck Davis, who took office on December 17, 2021, replacing the long-time former Treasurer Kopp) that these long-term payment obligations should not count against the state’s Capital Debt Affordability Ratios.  While I have not seen a formal ruling on this from the State Treasurer’s office, presumably he agreed with the MDOT view as otherwise it would not have been presented to the Board of Public Works on January 26.

The SpaceX Starship: Revolutionary, If It Works (Which It Probably Will – Eventually)

Source: Wikipedia – Super heavy-lift launch vehicle

A.  Introduction

SpaceX is currently developing a truly gigantic rocket it has named Starship.  It would be revolutionary.  Not only would it lift a heavier payload than the Saturn V, the rocket that took Apollo to the Moon and until now the heaviest lift launch vehicle that has successfully flown, but Starship is also being designed to be fully reusable.  Both the first stage and the orbiter would fly back to the launch pad, where they each would be caught in mid-air as they land by arms extending from the launch tower.  They would then be refueled and after minimal reinspection be able to take off again, within hours.  And each flight would cost only $2 million.

If all this works as intended.  And that remains to be seen.  But there are good reasons to believe it will, eventually.

It is certainly likely that there will be explosions or other causes of failure in the early orbital test flights now upcoming, and that even once operational the turn-around time will at first be a good deal longer than a few hours and the cost a good deal more than $2 million for a flight.  But even a cost that is ten times higher would still be incredibly cheap for such a lift capacity.  And the iterative process SpaceX follows of testing to failure, learning from the test, redesigning to address the problems found, and then testing to failure again, is a process that has allowed SpaceX to work through to a successful design.  It took some years of such tests before the first stage of the Falcon 9 rocket of SpaceX was successfully flown back to the launch site (or to a platform on a drone ship in the ocean) and landed, and then reused after some refurbishment.  But eventually, after a number of test failures, SpaceX worked out how to do this.  It is now routine.  And prior to SpaceX demonstrating this technology, the established view was that this would be basically impossible for an orbital launch vehicle.

Furthermore, in April 2021 NASA awarded SpaceX a close to $3 billion contract to build a variant of the Starship orbiter that would carry NASA astronauts from lunar orbit to the surface of the Moon and back.  It did this following a year of NASA engineers closely examining the SpaceX proposal (along with competing proposals from two others), reviewing the Starship plans with full access to all the technical information and to the development and testing plans.  NASA concluded the SpaceX Starship system could be relied upon to deliver on its proposal.  This is a tremendously important vote of confidence in the Starship system.

This post will first review the Starship system and what it promises to deliver.  It is really pretty astounding.  The big question is whether it will work, and that remains to be seen.  But the post will review the development process SpaceX is following, and contrast that with the sharply different process NASA is following with its Space Launch System (SLS) rocket.  The SLS, with its high cost and long delays, was discussed in some detail in an earlier post of this blog.  The contrasts in the approaches taken are stark.  The SLS will be a similarly sized rocket as Starship (a bit smaller), but has followed a very different design and development process.  Development began in 2011, with a design where the major components (the engines and the solid-fuel boosters strapped on the side) were the same as those used on the Space Shuttle or from other existing sources.  This should have saved both time and expense.  Yet despite this, there has yet to be a test flight of the SLS even though it is now more than ten years later.  The much delayed first flight is now scheduled (as I write this) for February 2022 (and had been set as November 2021 just a few months ago), and it is expected that recently discovered problems will delay this further.  Hopefully that first (and only planned) test flight will succeed.  If it does not, it is not at all clear what will happen to NASA’s plans to return to the Moon under the Artemis program.  As discussed in my earlier post, each SLS costs $2 billion to build, and under current production plans a second one will not be available for another two years in any case.

The Starship system that NASA has chosen to carry crew to the Lunar surface and back is also quite astounding.  This post will review what it would be able to do, and contrast this with the two competing proposals that NASA considered – the proposal from a team with Blue Origin (owned by Jeff Bezos) in the lead and one with the firm Dynetics in the lead.  The contrast is huge, where the SpaceX Starship proposal would deliver far more in several different dimensions (and at far lower cost).

The capabilities of the Starship also immediately raise the question of whether NASA should make use of it in a total revamp of its Artemis program to return astronauts to the Moon.  Instead of stuffing the crew into the relatively tiny Orion capsule for the trip from the Earth to lunar orbit, launched on an SLS that costs $2 billion per launch, why not use what would otherwise be an empty Lunar Starship for the journey?  The Lunar Starship will not only have all the life support systems needed by the crew for a multi-week journey, but the fully furbished habitable volume on the Lunar Starship is over 1,000 cubic meters, vs. just 9 cubic meters in the Orion capsule.  Certain technical issues would of course need to be worked out, but that should not be an insurmountable obstacle.

There likely will be obstacles, however, but political ones rather than technical ones.  This post will conclude with a discussion of those issues.  In my earlier blog post, I estimated that just for the period from when the programs started to what is planned by FY2023, Congress will have appropriated and NASA will have spent a total of $21.8 billion on the Orion capsule and a total of $32.4 billion on the SLS, for a total of $54.2 billion on them together.  It would be embarrassing, to say the least, to recognize that they turn out not to be needed, and that the SpaceX Starship system would not only be far less expensive but also far more capable.  And politicians do not appreciate being embarrassed.  While the politicians have asserted that they have been funding these programs to achieve certain space exploration goals, what appears to have driven the support of a number of the key Senators and Congressmen on the committees that set the NASA budget has been less the space exploration goals and more the resulting number of well-paid jobs in their constituencies.  Seen in this light, the high cost of the SLS / Orion systems is not a flaw but a feature.

But this is not sustainable.  How much the US government will spend on space exploration is limited, and treating it as a jobs program will mean national goals will either be long delayed or never met at all.  And while private companies such as SpaceX can help NASA achieve national goals (faster and at lower cost), they can only help if they are used to help.  Congress has often been opposed, with both Democrats and Republicans unfortunately aligned on this.  China is now moving fast in its space exploration program, and NASA may soon be left far behind if Congressional priorities do not change.

B.  The SpaceX Starship, and the SpaceX Approach to Development and Testing

SpaceX is currently developing, and actively testing, the extremely large rocket it has named Starship.  If it works, it will be revolutionary.  Starship will be huge – larger than the Saturn V as well as the SLS – and capable of delivering to low earth orbit a payload of 100,000 kg initially with this expected to grow to 150,000 kg or more as it is further developed.

The diagram at the top of this post shows Starship in comparison to other heavy-lift vehicles to give you a sense of its size.  It is huge.  And while the design is still evolving as its testing program proceeds (with the version of Starship shown in the diagram from a year or two ago), its basic dimensions will remain the same.  The Saturn V is well known, and is the heaviest-lift launch vehicle that has ever flown.  The SLS Block 1 will be the initial version of the SLS, with its first flight test now planned for 2022.  The SLS Block 2 Cargo is a planned follow-on SLS variant – still to be developed – that would have the heaviest lift capacity of the SLS series if it is ever built.   Finally, the N1 launch vehicle was developed, in secrecy at the time, in the USSR in the 1960s to carry its cosmonauts to the Moon.  There were four tests between 1969 and 1972.  Each failed with an explosion, and the especially spectacular explosion on the second test on July 3, 1969 – just 13 days before the launch of Apollo 11 – has been estimated to have been comparable in magnitude to that of the nuclear bomb dropped on Hiroshima. It was the biggest man-made non-nuclear explosion in history.

The SpaceX Starship will be a two-stage vehicle, with a first stage (named the Super Heavy) that will have a thrust at take-off that is more than double what it was on the Saturn V.  The first stage will initially use 29 of the newly-developed engines named Raptor, with a plan to increase this to 33 Raptor engines very soon.  And that number might rise to as many as 37.  The engines burn liquid methane with liquid oxygen.  The second stage will be powered by 6 Raptor engines (three optimized for burning in the vacuum of space and three for operation at ground level), with the spacecraft carrying the cargo and/or crew fully integrated into it.  Confusingly, this second stage/spacecraft has been named Starship, which is also the name of the whole rocket including the first stage Super Heavy booster.  To ease possible confusion, some refer to the second stage/spacecraft as the “Orbital Starship”, and I will as well.  The Orbital Starship would come in several variants, with vehicles just for cargo (Cargo Starship), for a human crew (Crew Starship), and to serve as a fuel depot in space (Fuel Depot Starship).  And as will be discussed in more detail below, NASA has extended a contract to SpaceX to build a variant that will take an astronaut crew to the Lunar surface and back (Lunar Starship).

Importantly, all components of Starship will be fully reusable, with the plan that there would be just minimal to no maintenance required between launches.  The Super Heavy booster would return to the launch site and relight some subset of its engines for a soft landing.  Indeed, as noted above, the plan is that it would come down precisely at the launch tower, where two extended arms on the tower would catch it as it (slowly) comes down.  No landing legs would be required.

The Orbital Starship would also be fully reusable.  It will have heat shield tiles that are chemically very similar to those used on the Space Shuttle, along with wing flaps and tail (see the drawing above) to guide the Orbital Starship as it re-enters the atmosphere and then lands.  A restart of a subset of the engines near the end will allow for a soft landing.  And as with the Super Heavy, the plan is for it to return to the launch tower to be caught as it comes down by the two large arms.  The plan (and hope) then is that the Starship and Super Heavy could be re-attached, refueled, and launched again within hours, with just minimal inspection required to ensure all was fine.

The payload will also be huge.  The immediate design goal is a payload to low Earth orbit of 100 tons.  This would be more than the SLS (95 tons in the initial, Block 1, version), although less than the Saturn V (140 tons).  But SpaceX plans to raise the payload capacity relatively soon to 150 tons through various means, and some have argued it might grow to even more.  As noted above, the number of Raptor engines on the first test flight will be 29, but will soon be increased to 33 and eventually possibly to 37.  Elon Musk (in a tweet on Twitter in July 2021) also mentioned the possibility that the number of Raptor engines on the Orbital Starship might be increased from six to nine at some point.  The additional three would all be the Vacuum Raptor variant.  This flexibility that has been built into the design of the Starship system – where adding core engines does not necessitate a complete revamping – is really quite remarkable.

The power of each engine will also soon be raised.  The Raptor 2 engine, which is already now starting to be produced, will have 230 or more tons of force – a big increase over the 185 tons of force in the first version of the engine that has been on the test flights thus far.  SpaceX also has a history of upgrading the performance of its rockets over time.  The initial version 1.0 of the Falcon 9 rocket could carry a payload to low Earth orbit of 9.0 tons.  But this rose to 22.8 tons in the Block 5 model that is now standard (22.8 tons when the boosters are expended, or 16.8 tons when the booster is recovered). That is, the Falcon 9 can now carry to orbit 2 1/2 times what it could when it first flew.

Will Starship work?  That remains to be seen, but testing is underway and there are reasons to be optimistic.  As I write this in December 2021, there have been seven test flights, all (so far) of the Starship upper stage, with simple up and down flights of up to 12.5 kilometers and a landing attempt on each.  There were a series of sometimes spectacular crashes (or as SpaceX calls them, RUDs, for Rapid Unscheduled Disassemblies), but the seventh (and hence final flight of the series) was fully successful, so they have moved on.  The plan now is to conduct a first test of the full Starship, with the Super Heavy plus the Orbital Starship launching from the SpaceX base in Boca Chica, Texas (on the Gulf of Mexico at the border with Mexico).  The first test would be of an almost orbital flight (more than 80% of what a full orbit would be) to land about 100 kilometers northwest of Kauai in the Hawaiian Islands.  The Super Heavy would return most of the way to the Boca Chica base but come down softly in a “landing” in the waters of the Gulf of Mexico around 20 kilometers off the coast on this first try.  The Orbiter Starship would come down through the atmosphere, testing its heat shield in particular, to “land” in the waters of the Pacific.

It will be an ambitious first test of the complete rocket, and the likelihood of everything working right the first time is low.  But this is in keeping with the SpaceX development and testing approach (to be further discussed below), which is to test early and often, and then iterate on the designs until they work.  While no date has been publicly announced for this first test (SpaceX is a private company and under no obligation to announce this), the indications are that the aim is for a first flight sometime early in 2022.  However, this will depend on SpaceX receiving necessary permits (related to environmental and safety issues) from the FAA, and it is not clear as I write this when this process will be completed.  While SpaceX ignored this requirement on one of the early test flights of Starship, it is now on notice from the FAA and it is doubtful they will ignore them again.

As noted before, if the design works it would be revolutionary.  It would be fully reusable, with both the first (Super Heavy) and second (Orbital Starship) stages returning not simply to a base but to the very launch tower where they would be caught in mid-air.  Probably the biggest question mark is whether the heat shield that covers one side of the Orbital Starship will prove to be durable and quickly reusable with no maintenance required.  As noted above, the chemical composition of the material is similar to that used on the heat shield for the Space Shuttle.  But on the Space Shuttle, extensive checks and maintenance of the heat shields proved to be necessary after each flight, with this a major contributor to the high cost of the Shuttle.  The original plan (and hope) was that a Space Shuttle could be turned around and flown again within two weeks of its landing from its preceding flight.  This proved impossible.  In the later years of the Shuttle program, each operational Shuttle was generally flying only once a year.

SpaceX has learned and applied important lessons from the experience with the Space Shuttle, and has addressed the heat shield tile issues in two important ways.  First, while most of the over 21,000 heat shield tiles on each Space Shuttle Orbiter had to have a unique shape due to the shape of the Shuttle, most (although not all) of the tiles on the Starship Orbiter will have a standard, hexagonal, shape.  This will make them far easier to replace when needed, as a new, custom-molded, tile will not (normally) need to be made each time.  And second, the tiles on the Starship Orbiter will be attached to built-in spikes on the body of the Starship, rather than attached with just a special glue.  It is hoped this will make them more durable.

If a fully and rapidly reusable design can be made to work, the cost of each flight of the Starship will be incredibly low.  Elon Musk has said that the fuel would cost only about $900,000 on each flight, and with the other operational costs the total would only be about $2 million per flight  This might well be optimistic (Elon Musk often is), but even if it is, say, ten times higher at $20 million per flight, then with a 100,000 kg payload the cost per kilogram will be roughly one-hundredth of the cost per kilogram of a launch on the similarly sized SLS.  And it will be roughly one-tenth of the cost per kilogram of launching on the current lowest-cost launcher – the Falcon Heavy.  And if it truly works out to be $2 million per launch, then the cost will be one-thousandth of what it would cost on the SLS.  This is all pretty incredible – if it works.

The development cost will also be far below what it has cost NASA to develop its similarly sized SLS.  As discussed in the earlier blog post, the cost of developing the SLS will have reached over $32 billion by FY2023.  While the cost of developing the Starship has not been published (SpaceX is a private company), and indeed as not is known by anyone what in the end it might be as development is still underway, Elon Musk has said in an interview that he expects it will come to about $5 billion to complete.  If that turns out to be the case, that would be less than one-sixth the cost of the SLS.  And while it is not clear whether the $5 billion includes the cost of including a section of the Starship to house the crew, if it does then for comparability the cost of developing the Starship with the crew quarters should be compared to the cost of SLS and Orion together  That will total over $54 billion – $32.4 billion for the SLS plus $21.8 billion for Orion.  That would be ten times higher than the cost of developing a crew capable Starship, if the $5 billion estimate for Starship turns out to be correct.

But the design remains to be proved.  While the first test flight will be important, the odds are high that there will be a failure at some point during that test.  As long as the Starship manages not to explode on the launch pad (with the damage that would cause to the launch pad) the flight should be considered a success.  Valuable information will have been obtained.  Particularly valuable, if it gets to that point, will be information on how well the heat shield holds up on re-entry.

The process followed by SpaceX is iterative.  A design is developed, a prototype is built, and it is then quickly tested – to the point of failure to see how much it can do.  Alterations are then made in response to what did not work in the test, with the revised design then soon tested again to take it to the next stage.  Failures are common and indeed expected.  Musk has noted that if failures did not occur, then you were not pushing it far enough.

Importantly also with this approach to development, manufacturing methods need to be developed to allow that frequent testing to the point of failiure to be at a cost per test that is not high. As Musk noted in a tweet in February 2020:

“Hardest problem by far is building the production system of something this big. …  Building many rockets allows for successive approximation. Progress in any given technology is simply # of iterations * [times] progress between iterations.”

This would then also drive design decisions.  For example, and directly counter to the conventional wisdom, the Starship hull and tanks are made of stainless steel.  Steel is seen as heavy – not good for a flying vehicle – and almost all rockets and spacecraft have been made of aluminum.  In the initial design, Starship was to be made of advanced carbon fiber.  Carbon fiber is light and can be made to be strong, but for several reasons the decision was made to switch to stainless steel.  Prominent among them was that stainless steel is relatively easy to work with – it can be bent or reshaped when needed for a design change – plus it is cheap.  As Musk noted in an interview in January 2019 (just after they announced Starship would be made of steel rather than carbon fiber), the type of stainless steel they need costs only about $3 per kg, vs. $135 per kg for carbon fiber.  Furthermore, there is about 35% wastage when one works with carbon fiber, so the true cost per ton for carbon fiber is over $200 per ton.  Any scrap from the stainless steel can be melted down and used.

There are also other advantages to steel, including its far higher melting point (which means less depends on the heat shield tiles, and they can then be made both simpler and lighter).  But the flexibility provided by using a relatively inexpensive and easily worked material is key in the SpaceX iterative development approach with its frequent testing and then redesign.

The decision to switch to stainless steel from the original plan to use carbon fiber also illustrates the flexibility in the overall approach followed by SpaceX.  Elon Musk’s first public announcement of his intention to build what evolved into Starship was made in November 2012.  The Raptor engines that would power the rocket were already being tested on NASA test stands in 2014.  The initial design, then at a 12-meter diameter, was revealed in September 2016.  This was then changed dramatically, to a 9-meter diameter design, in September 2017.  Through this point, the rocket would have been made of carbon fiber.  But then in December 2018, Musk revealed they had decided to switch to stainless steel for the reasons noted above.  And then just four months later, in April 2019, they were already conducting their first flight tests of what they called the Starhopper vehicle.  These were tests basically of the Raptor engine, the use of the engine to allow for a soft landing (and the controls required for this), and the stainless steel design.  The Starhooper test vehicle was tethered for its first “flight” on April 3, 2019 and it rose just one foot.  They then took it to one meter two days later on April 5.  The first untethered flight was in July 2019 to 20 meters, and the final test was in August 2019 when it rose to 150 meters and moved sideways for a short distance before returning to land softly on the ground.

There were then a series of seven tests of what became increasingly similar to the Orbital Starship starting just one year later, between August 2020 and May 2021.  The test vehicle had just one Raptor engine for the first two tests (rising just to 150 meters, and then landing) and then three Raptors in the subsequent tests (where it rose to a height of up to 12.5 km before returning to the pad to try to land).  After a few spectacular crashes and explosions, the Starship had a clean landing at the pad on the seventh and hence final flight.  There were modifications made following each test flight, fixing what went wrong, and they got it right by the seventh such flight.

The iterative SpaceX approach is in sharp contrast to that used by NASA in its development of the far more costly SLS.  As noted before, there has not yet been even one flight test of the SLS design, with the first now scheduled for February 2022 but most likely until sometime later due to recent issues being discovered.  Yet it has been under development since 2011, and arguably from before as the SLS design has many similarities with the Ares V rocket that at that time was under development (but then superseded by the SLS).  And the SLS design is based on existing rocket components, with the four main engines the same as those on the Space Shuttle (the Ares V would have had five of those engines, but otherwise the same).  The two solid-fuel side boosters are also taken from the Space Shuttle (and indeed make use of ones left over from the Space Shuttle program for the initial several SLS boosters to be built – but each with five segments rather than four).  And the second stage of the initial SLS is taken from that used on recent Delta IV rockets.

Drawing from existing rocket components is not necessarily wrong, as it should have led to lower costs and a shorter development period.  It is thus particularly difficult to understand why it has taken so long – with no flight test even after ten years – and why the cost has been so high.  In contrast to SpaceX, NASA has followed an approach where great care (and expense) is taken to try to ensure the full and final design is completely right, with few tests of the overall system.  Indeed just one test flight is planned for the SLS.  If this test fails, it is possible the total program will end.  It will depend on whether they can determine whether the cause of the failure can be found and relatively easily fixed.  A failure would in any case cause major delays of probably years.  A second SLS will not be available for two years (in the current schedule), and it could take longer depending on what they determine was the cause of the failure on the first test.  That is a lot riding on just one test, for a program expected to cost over $32 billion.

C.  Starship as a System to Land Astronauts on the Moon

1)  Introduction

The decision by NASA in April 2021 to select the SpaceX proposal to ferry astronauts from lunar orbit to the surface of the Moon and back was highly significant for several reasons.  First, and importantly, it was a clear vote of confidence by NASA management and its technical staff that the Starship system would not only work but would work soon.  NASA teams had thoroughly reviewed the proposal of SpaceX (as well as the two competing proposals, from Blue Origin and Dynetics) for more than a year, with full access to the technical teams at SpaceX.  As a critical, outside, reviewer seeking to find any holes that there might be in the SpaceX plans, NASA’s conclusion that the SpaceX proposal was doable is of great significance.

Second, the use of Starship for this purpose illustrates well the capabilities Starship will have, once it is operational, for not only such lunar missions but more broadly.  It is therefore of interest to examine in some detail what SpaceX is now being contracted to do, how it would work, and what Starship might then be used for, in particular in support of NASA’s goal to return to the Moon and establish a base there.  Contrasting the SpaceX proposal for what NASA is calling its “Human Landing System” (or HLS) with the two competing proposals that NASA considered is also of interest as it highlights how uniquely capable the Starship system is in comparison to the best that others can offer.

2)  Lunar Starship – The SpaceX Proposal for the HLS

NASA has contracted SpaceX for its Human Landing System, where it would serve as one component of the system NASA would use to return men (and as NASA repeatedly emphasizes in its PR materials, also women and a person of color) to the Moon.  Other major components of that system include the Orion spacecraft to carry crew from the Earth to lunar orbit, a “Lunar Gateway” that would be a modest-sized space station in permanent orbit around the Moon and serve as a waystation to transfer crew and cargo to the vehicles that would bring them to the lunar surface, and the SLS rocket that would carry the crew and possibly cargo to lunar orbit from the Earth.

NASA developed this basic plan to return to the Moon in the mid-2010s, with a goal of a first landing back on the Moon by 2028.  This time frame was then greatly compressed in 2019 by the Trump administration, with NASA charged with accomplishing this by 2024.  Vice President Mike Pence (in his capacity as head of the National Space Council) made the announcement, but stated this was “at the direction of the President”.  While the reason for the choice of 2024 was never officially stated, few failed to notice that 2024 would have been the final year of a second Trump term in office, had he not lost the election in 2020.

NASA then modified its plans in accordance with this new mandated schedule.  While the new schedule was never realistic, the revised, compressed, schedule did have real impacts on the mission designs and on contracts signed.  And while NASA has now finally acknowledged that the 2024 target will not be possible, it is still officially following the plans as drawn up during the Trump presidency.  The only change is the first landing on the Moon with a crew would not take place in 2024, as planned before, but in 2025 (which is still far from realistic – several more years should be added).  The new NASA Administrator Bill Nelson announced the 2025 date during a press conference in November 2021, and blamed the delay on the seven months lost due to the litigation by Blue Origin protesting the award of the HLS contract to SpaceX (which will be further discussed below).  Bill Nelson is a former Democratic Senator from Florida who has long been closely involved with NASA space programs, flew on the Space Shuttle in 1986 as a member of Congress, and was one of the key Senators (along with Republican Senator Shelby of Alabama and others) who wrote into legislation in 2010 the requirement that NASA develop the SLS (discussed further below).

Based on these still official NASA plans (albeit slightly delayed to 2025), NASA would organize the return to the Moon through a series of missions that it has labeled the Artemis program (where Artemis was the twin sister of Apollo in Greek mythology).  Specifically:

a)  Artemis I:  This would be the first, uncrewed, test flight of the SLS together with the Orion capsule, with a scheduled launch date (until recently) of February 2022.  It has been repeatedly delayed.  The original plan (in 2011) was that the SLS would have flown no later than 2017.  And while a new official launch date has not yet been set as I write this, no one expects that it will launch in February, this time due to new problems recently found in a malfunctioning computer for the SLS engines.

When the launch does take place, the SLS would send the unmanned Orion capsule first into Earth orbit and then to the Moon, passing just 60 miles above the lunar surface before entering into a high orbit of 38,000 miles above the Moon.  It would spend several days there and then return to Earth, passing again 60 miles from the lunar surface, and then testing its heat shield in the high-speed re-entry to Earth.  The entire mission would take several weeks.

b)  Artemis II:  This would be the first crewed launch of the SLS and Orion.  Until recently the official plan was for it to go in 2023, but with the acknowledgment that the first crewed landing on the Moon will not be before 2025, it has been pushed to May 2024.  This is still unrealistic.  And as the Office of the Inspector General of NASA noted in a recent assessment of the Artemis program, sending a crew on a mission around the Moon on the first flight of the Orion capsule with life support systems in place is an “operational and safety risk”.  The life support system has not been included in the Orion capsule being tested on the Artemis I mission to save on cost (and maybe time).

Artemis II would be a ten-day mission, with the SLS first launching the Orion into a high Earth orbit, during which the Orion and its life support systems would be monitored to see whether all is working properly.  After about two days it would then be launched to the Moon, but not into lunar orbit.  Rather, it would be sent on a fly-by trajectory where it would use lunar gravity to swing around the Moon, in a large figure-8, and then return directly to Earth.

c)  Artemis III:  This would be the first crewed landing on the Moon, with about one week to be spent on the lunar surface and the whole mission taking about two weeks.  The Orion would be launched on the SLS and would go to a very high lunar orbit (what they call a “Near Rectilinear Halo Orbit”, or NRHO).  The NRHO will have an apogee of 43,500 miles and a perigee of 1,900 miles, and just one orbit will take seven Earth days.

The original plan was that the Lunar Gateway would have been prepositioned in this orbit to serve as a staging area where the Orion would unload its crew and cargo, with the HLS then loaded with the crew and cargo from it to take them to the lunar surface.  But while there may be some components of the Lunar Gateway system ready in lunar orbit by then, there are skeptics on whether it will be ready by whenever Artemis III might be launched.  In that case, the transfers of crew and cargo would be done directly from the Orion to the HLS.  This of course calls into question why it is needed at all.  There might be a quite valid scientific justification for such a facility in orbit around the Moon, but so far the rationale given has been its role in the Artemis missions.

SpaceX won the contract for the HLS.  Under its proposal, a version of the Orbital Starship would be developed which would operate solely in the space environment to ferry crew and cargo back and forth to the lunar surface.  It would never re-enter the Earth’s atmosphere and hence would not need the heat shield.  Nor would there be a need for the large wing flaps and tail that on the Orbital Starship are required for aerodynamic control on re-entry to the Earth.  And while I have not seen this written in any of the limited plans that have been made publicly available (details on the Artemis plans that have been made public are surprisingly sketchy), it is not at all clear that the Lunar Starship would require all six of the Raptor engines that are on the Orbital Starship.

Three of those Raptor engines are optimized for operation in the vacuum of space (Vacuum Raptors), and three (Sea-Level Raptors) are optimized to operate in the atmosphere near sea-level for the return and soft-landing on Earth.  I have not been able to find in any reports whether all six are needed for the initial launch into Earth orbit, but with three designed for operation at sea-level, it is not clear that all six are.  Furthermore, the Lunar Starship itself would be lighter than an Orbiter Starship (due to no heat shield nor flaps) so less thrust would be needed.  It is therefore not clear whether the three Sea-Level Raptor engines would be needed, and if not this would also save a good deal of weight.  And with three Raptor engines sufficient for a landing on Earth, one would assume that three would more than suffice to land in the far lower gravity of the Moon.  Indeed, while full details have not been made public, the final phase of the landing of the Lunar Starship on the Moon would not use the Raptor engines at all, but rather a large number (possibly 24) of medium-sized thrusters positioned in the mid-body of the Lunar Starship for the final landing.  This is so that the Raptor engines at the bottom do not blow out an excessive amount of debris as they land.

Keep in mind also that once a vehicle is in orbit, the thrust required in order to, say, launch the craft on to a trans-lunar trajectory (TLI) from Earth orbit to the Moon (or vice versa) does not have to be all that strong.  The power required comes from the combination of thrust times the duration of the burn, so a set of engines with a lower overall thrust could achieve the velocity required by having the engines stay on for a longer period of time.  This is in contrast to a launch from the Earths’s surface, where a high thrust is needed to escape the pull of gravity.  Once in orbit, one does not need to rush this.  So again, it is not clear that one would need to keep all six Raptor engines on the Lunar Starship.  The only issue is whether the initial launch of the Lunar Starship into Earth requires all six Raptors, even though only three are optimized for operation in a vacuum.

The Lunar Starship would be launched into Earth orbit on the Super Heavy booster, as would be standard.  Some set of its own Raptor engines would also be fired for this.  It would then be refueled in Earth orbit before launching to the Moon.  This ability to refuel in orbit is a key ability of the Starship system, and is central to the flexibility that Starship allows in serving multiple objectives.  Prior to the launch of the Lunar Starship, a Fuel Depot Starship would have been launched into Earth orbit, where it would have received fuel carried and then transferred to it from multiple Orbital Starship launches.  The Fuel Depot Starship would essentially be a set of two large fuel tanks (one for liquid methane and one for liquid oxygen – the fuel plus oxidizer used by Starship) that has been well-insulated given the cryogenic temperatures the fuel and oxidizer need to be kept at.  And since the Fuel Depot Starship would be kept in orbit and not land back on Earth, there would be no need for a heat shield nor the wing flaps (nor for all six of the Raptor engines I assume) on it either.

A fully-fueled Starship can hold 1,200 tons of fuel (or technically, fuel plus oxidizer).  But each Starship launched from Earth would be able to carry 100 tons of cargo initially, with this expected to grow relatively soon to 150 tons.  Assuming the 150-ton capacity, Elon Musk noted that eight Starship flights to the Fuel Depot Starship would provide the 1,200 tons needed to fill the tanks on a Lunar Starship.  But how full the tanks would need to be will depend on how much the Lunar Starship would weigh (with no heat shield, wing flaps, nor possibly some of the Raptor engines), and how heavy of a payload would be taken to the lunar surface.  Musk concluded that only four flights to deliver fuel might be sufficient.

Much of this is still not clear – at least in what has been made public – and the final answer will depend on how heavy a payload the Orbital Starship will be able to carry to low Earth orbit (100 tons or 150 tons or something in between), how much lighter the Lunar Starship might be than the regular Orbital Starship, and how heavy the payload to the Moon would be.  And with differing payloads, the number of refueling flights needed might well differ from mission to mission.  None of this has as yet been spelled out, and likely is not yet fully known to anyone given the factors that are still uncertain.  But the key point is that the Starship system provides for flexibility where if additional flights are needed to lift the fuel required for refueling of the Lunar Starship in orbit, they can be carried out as needed.

Fully refueled, the Lunar Starship would then be sent to lunar orbit, to either the Lunar Gateway (if it has been built) or just to the similar orbit, to await the Orion capsule carrying the crew who would be launched on an SLS.  The Lunar Starship would likely already have most or all of the cargo required, but if there is anything additional carried on the Orion it would be transferred along with the crew.  The Lunar Starship would then carry the crew and cargo to the surface of the Moon and serve as a base for the crew during the time they spend on the lunar surface.  On the first mission (Artemis III) the current NASA plan, as noted above, is that this would be one week.  Also, the contract specifications NASA wrote for the HLS competition was that the initial mission to the Moon would be for two astronauts to land while two would remain in lunar orbit at either the Lunar Gateway (if available) or just in the Orion capsule.  After the initial mission, NASA’s plan is that the HLS should be upgradable so as to be able to carry four astronauts to the surface and back.  But given the extremely large capacity of the SpaceX Lunar Starship, it is likely that they will build in the capacity to carry a crew of four from the start.  And if NASA keeps to its plan to use Orion to carry astronauts to lunar orbit from the Earth, then that will be the ceiling as the Orion can carry no more than four (other than in an emergency).

Once the Lunar Starship carries the crew back to the Orion capsule waiting in lunar orbit, the Orion with the crew would return to the Earth.  The Lunar Starship, designed to be fully reusable for this role, would return on its own to Earth orbit where it could then be refueled by multiple regular Starship launches, stocked with any cargo desired, and then sent back to the Moon for the next NASA mission.  And the cycle could keep repeating.

3)  Comparison of the Three HLS Proposals:  SpaceX, Blue Origin, and Dynetics

After an initial request for proposals for the HLS in 2019, NASA provided funding in May 2020 to three teams to develop their proposals further.  The three chosen were Space X (with its Lunar Starship); a team that called themselves the “National Team” but which was led by Blue Origin and which is typically referred to as the Blue Origin proposal; and finally a team led by the not too well known aerospace firm Dynetics.  The HLS vehicle of Dynetics is named “ALPACA” (an acronym for Autonomous Logistics Platform for All-Moon Cargo Access).

The three proposals differed radically, both in the approaches taken and in their size.  Such diversity in approaches is certainly good and healthy, but at the same scale they would look like this:

Source: IEEE Spectrum, January 6, 2021

 

The mission plan using the Lunar Starship was described above.  The plans are quite different for the Blue Origin and Dynetics proposals.  A short description of each will be helpful before the three proposals are directly compared.

Blue Origin has worked in partnership with Lockheed Martin, Northrup Grumman, and Draper for its proposed lunar lander.  Its design is the most traditional, with a broad similarity to the design of the lunar lander (the LEM) of the Apollo program.  That is, there will be three separate components, with a descent stage (to be built by Blue Origin itself, and called the “Descent Element”), an ascent stage (to be built by Lockheed Martin, and called the “Ascent Element”), as well as a “Transfer Element” (to be built by Northrup Grumman) that is basically a rocket engine with fuel tanks that would take the proposed HLS from the high lunar NRHO orbit to a low lunar orbit where it would disconnect and the descent stage would take over.  Draper (or Draper Labs) would be responsible for the descent guidance system and flight avionics.

Together they call themselves the “National Team”, with Blue Origin in the lead.  They have named their proposed lunar lander the “Integrated Lander Vehicle” (or ILV).  The firms in the National Team basically come out of the traditional aerospace industry.  While some might consider Blue Origin (owned by Jeff Bezos) as different – as a private, entrepreneurial, company more akin to SpaceX – it really isn’t.  Much of the Blue Origin leadership has been drawn from traditional aerospace firms, and it has followed a development process more similar to that of traditional aerospace than that of SpaceX.  Its CEO, Bob Smith, came to Blue Origin from Honeywell Aerospace, and had previously held senior positions at the United Space Alliance (a joint venture of Lockheed Martin and Boeing that managed aspects of the Space Shuttle program for NASA) and before that at The Aerospace Corporation.

The three components of the Blue Origin ILV would be flown to the NRHO lunar orbit on three flights of the United Launch Alliance (ULA) Vulcan Centaur rocket that is now under development.  The United Launch Alliance is a 50/50 joint venture of Boeing and Lockheed, and the Vulcan Centaur would be a follow-on launcher that would replace ULA’s Atlas V and Delta IV boosters that are now being phased out.  The Vulcan Centaur will use rocket engines (named “BE-4”) being developed by Blue Origin, but due to repeated delays in delivering those engines, ULA has had to postpone the first test flight of the vehicle.  At one point it was supposed to have flown in 2020.  Most recently, the formal plan is for a test flight in 2022, but some have noted that with the continuing delays at Blue Origin, the first test flight might not be until 2023.

Alternatively, instead of flying the three components of the Blue Origin ILV to the NRHO on three of the still-to-fly Vulcan Centaur launch vehicles (with the three components of the ILV then assembled together into one unit there), it could be flown to lunar orbit already assembled on one flight of the still-to-fly SLS.  But additional SLS vehicles are not available, and would cost $2 billion each if they were.  A single Vulcan Centaur launch is expected to cost perhaps $120 to $150 million.

After receiving the NASA crew and cargo in the NRHO lunar orbit, the Blue Origin ILV would then be taken to a low orbit around the Moon with the Northrup Grumman Transfer Element, after which it would disconnect and the Blue Origin Descent Element would take over for the final descent to the surface.  Using the Transfer Element basically saves on the weight of the larger tanks (and associated hardware) that would otherwise be required if all of the trip from the NRHO to the lunar surface were powered by the Descent Element.  And as discussed below, it might be possible to reuse the Transfer Element on subsequent missions, although this would require that the fuel it needs be brought to the lunar NRHO orbit in some way.

The habitable space in the ILS would be a pressurized cabin on the Ascent Element, and the crew would live there for the time they spend on the lunar surface (about a week on the initial mission).  Cabin space would be tight, and only enough for a crew of two on the initial flights.  NASA’s original plans for the return to the Moon was for a crew of four, but reducing this to two for the initial two flights was one of the simplifications NASA introduced (albeit at a greater overall cost in the long run) when the Trump administration instructed NASA to accelerate its plans and get a crew to the Moon by 2024.  But the intention is for crews of four after the first two missions, and one of the criteria NASA indicated it would consider in the competition for the HLS contract was whether the proposed lander could be relatively easily scaled up to handle a crew of four.  One factor NASA cited when it decided not to accept the Blue Origin proposal for the HLS was that such a scaling-up to accommodate a crew of four would be difficult with its design.  A substantially larger cabin in the Ascent Element would be needed, which would weigh more as well as take more space, which would require not only a substantially redesigned Descent Element to handle the extra weight but also more powerful Ascent Element engines to return the crew to the NRHO lunar orbit.

Once the Ascent Element returns the crew to the NRHO orbit, the crew along with any cargo (lunar rocks) being brought back would transfer to the waiting Orion (or first to the Lunar Gateway, if it is there yet), and then return to Earth on the Orion.

What is not fully clear is what will then happen in terms of reusability of (portions of) the Blue Origin HLS.  The Descent Element can clearly only be used once, as it would remain on the surface of the Moon.  The Ascent Element might in principle be usable again (if designed for this), and possibly also the Transfer Element (if it is designed to hold sufficient fuel to bring it back to the NRHO orbit following its use for bringing the HLS to a low lunar orbit).  However, each would then need to be refueled if they were to be used again, and probably two Vulcan Centaur launches would be required to bring those fuels (which are also different for each – liquid hydrogen and liquid oxygen for the Ascent Element and hypergolic fuels that ignite on contact for the Transfer Element).  it is not clear whether much, if anything, would be saved by developing the tankers to bring those fuels to the NRHO and then transferring them to the Ascent and Transfer Elements.  The tankers would then be thrown away as they could not be returned to Earth, and it is not clear whether much would be saved over just building new copies of the Ascent and Transfer Elements (along with the Descent Element) and then sending them fueled to the NRHO.

Dynetics has given the name ALPACA to its proposed HLS.  Dynetics is a medium-sized aerospace firm, based in Huntsville, Alabama, that was acquired by the defense contractor Leidos just a few months before NASA announced in April 2020 that Dynetics would be one of the three HLS proposals it would fund for further development.  While Dynetics would work with a number of subcontractors (the two most important being Sierra Nevada  Corporation – an aerospace firm – and Draper once again for the avionics), the responsibility for the design is fully with Dynetics.

The Dynetics design is quite radically different from any that have been considered before.  As seen in the artist’s rendering above, the Dynetics ALPACA would be basically a crew cabin with rocket engines and their tanks on the two sides.  Three launches on a Vulcan Centaur would be required to bring it to the NRHO lunar orbit – one for the empty ALPACA and two for the fuel and oxidizer (liquid methane and liquid oxygen).  The fuels would then need to be transferred to the ALPACA in the NRHO lunar orbit, and NASA cited this as a concern when it reviewed the Dynetics proposal.  The technology still has to be developed.  While there would also be in-space transfers of the cryogenic fuel and oxidizer in the SpaceX Starship proposal – and in far greater volumes – this would be done in Earth orbit for the Starship instead of lunar orbit for the Dynetics ALPACA.  If a problem arose, it could be more easily addressed if still in Earth orbit.  Furthermore, development of this refueling ability is central to the Starship system, and hence SpaceX is devoting a good deal of attention to ensure it will be able to do this.  Dynetics and its partners would not require this ability for anything other than their ALPACA.

Once fueled and ready, the Orion would be launched on the SLS, rendevous with the ALPACA in the NRHO lunar orbit for the transfer of the crew and cargo, and the ALPACA would then take the crew to the surface.  NASA found an important issue during its review of the Dynetics proposal, however.  Given the weight of ALPACA, the thrust of its engines, and the fuel that would be carried, NASA concluded that there would be insufficient fuel to keep ALPACA from crashing into the lunar surface, even with no crew or cargo at all.  That is, its payload capacity would be negative.  Dynetics conceded that this was indeed an issue with its current design, but was confident that they would be able to lighten ALPACA sufficiently so that it would be able to carry the crew and cargo and not crash.  NASA, however, was skeptical.  Such spacecraft normally increase in weight as they are further developed, as issues are found requiring modifications to resolve those issues.  It is rare that there would be a reduction in their weight.  And NASA’s bid specification was that the HLS had to be able to bring to the lunar surface a minimum of 865 kg (of crew and cargo, including the space suits needed to venture outside), with a preferred goal of 965 kg.

Assuming it could land, the ALPACA proposal had the significant positive in its design in that the crew cabin would be very close to the ground.  In the Lunar Starship proposal, the habitable crew cabin would be far above the ground, and an elevator arrangement would be used to carry the crew back and forth from the surface.  In the Blue Origin ILV, the crew cabin would also be far above the ground (although not as high up as on the Lunar Starship), but the crew would need to climb down and up a 12 meter (39 foot) ladder in their lunar spacesuits to reach the surface.  That would be cumbersome and probably tiring despite the low lunar gravity (as the lunar spacesuits would be heavy and bulky), and possibly catastrophic should anyone slip and fall.

At the end of the stay, the Dynetics ALPACA would then fly the crew back to the NRHO orbit to link up with the Orion (or Lunar Gateway if it is there), where the crew and any returning cargo would be transferred for the return to Earth on the Orion.  The ALPACA could then wait there, and if to be used on a subsequent mission, could be refueled with two launches of a Vulcan Centaur carrying fuel to it as would have been done on the initial mission.

The designs and mission plans are therefore radically different in the three proposals.  The proposed costs, as well as the payload and other capacities of the resulting bids, also differed dramatically, as summarized here:

Lunar Starship

Integrated Landing Vehicle (ILV)

ALPACA

Lead Firm

SpaceX

Blue Origin

Dynetics

Other Primary Firms

none

Lockheed Martin Northrup Grumman Draper

Sierra_Nevada  Draper

Max Payload to Lunar Surface

100 tons

850 kg

negative

Habitable Volume

1,000 m3

12.4 m3

14.5 m3

Floor Area

325 m2

4.7 m2

5 m2

Max Crew Size

Many (well more than 4 if desired)

   2 at first; redesign    for 4

2 at first; later 4

NASA Development Award, April 2020

$139.6 m

$479.7 m

$239.7 m

Final Bid Price, April 2021

$2.94 b

$6.00 b

$9.08 b

Depending on the number of refueling flights of Starship to Earth orbit, the Lunar Starship could conceivably carry as much as 100 metric tons of cargo to the lunar surface.  This dwarfs the estimated 850 kg that the Blue Origin ILV could bring (which is close to, but slightly below, the minimum NASA specification that it should be able to bring 865 kg to the surface).  And as noted above, NASA does not believe the Dynetics ALPACA would be able to carry even itself to the surface without crashing into it.

The habitable volume of the Lunar Starship would also be enormous, at 1,000 cubic meters.  This is larger than the entire habitable volume of the International Space Station (which is 916 cubic meters), and the ISS had to be slowly assembled in space over a period of 13 years.  In sharp contrast, the habitable volume of the Blue Origin ILV would be just 12.4 cubic meters, which it says would be enough for a crew of two, but acknowledges would not be enough for a crew of four.  Hence the need for an extensive redesign of the Blue Origin ILV if it were to be used for subsequent Artemis missions when they would need to accommodate a crew of four.  And the Dynetics ALPACA would have a volume of 14.5 cubic meters – only a bit more than on the Blue Origin ILV – which it argues would be sufficient for a crew of four.  Keep in mind that the habitable space for the crew is not simply for their landing on the lunar surface, but for their stay there of about one week on the first Artemis mission with this increasing to a planned 30 days on the following Artemis mission and even more later.  Such accommodations would be tight, especially for a crew of four.

Resting on the lunar surface, where there is gravity and not simply the weightlessness of a vehicle in orbit, the floor area will also matter.  For the Lunar Starship, the floor area (on several different floor levels) would come to 325 square meters (3,500 square feet).  That would be the floor area of a very substantial house in the US.  In contrast, the floor area on the Blue Origin ILV would be just 4.7 square meters, and only slightly more at 5 square meters on the Dynetics ALPACA.  Five square meters for a crew of two for a week is not much, and especially not for a crew of four for a month or more on the lunar surface.

NASA announced in April 2020 it would provide funding to the three competitors for them to develop more concretely their proposals.  But the dollar amounts provided were not equal.  NASA was relatively quite generous with providing almost $480 million to the Blue Origin team, but just half this (almost $240 million) to Dynetics for its ALPACA proposal.  And to SpaceX the grant was just below $140 million.  One cannot argue that NASA was unfairly favoring SpaceX in its grants for the further development of the proposals.

Finally, the price SpaceX bid for the contract – at $2.94 billion – was less than half the $6.00 billion price Blue Origin offered, and less than one-third the price of $9.08 billion Dynetics said it would need.  The price includes the development of the vehicle, a test flight where it would go through the full mission sequence (including landing on and then returning from the lunar surface) but without a crew, and then the Artemis III mission itself with a crew of two.

Based on all this, it should not be difficult to see why NASA chose the SpaceX proposal.  Basic feasibility is of course key, and NASA certainly paid close attention to this.  It found, for example, that by its calculations, the Dynetics ALPACA would not be able to land on the Moon with any payload at all.

But after its detailed review of the SpaceX plans during the year it was funding the more concrete development of those plans, and with full access to all the SpaceX technical teams and the work they had done, NASA engineers concluded the SpaceX proposal was feasible.  As noted before, this in itself was a tremendous vote of confidence in the still-to-fly Starship.  And NASA also concluded that SpaceX would be able to deliver on these plans quite soon.  While I personally have strong doubts that this will be possible by 2024 (or even 2025), this time frame is of interest as it implies that NASA engineers believe the basic Starship system will be flying successfully very soon, i.e. by sometime in 2022.  It implies that they have concluded that the current Starship design is basically doable, and that a major redesign will not be necessary for it to be successful.

Despite the clear superiority of the SpaceX proposal over those of Blue Origin and Dynetics, the latter companies did not see it that way.  Soon after NASA’s decision was announced in April 2021, both Blue Origin and Dynetics appealed to the US Government Accountability Office (GAO), arguing that NASA had not properly followed government procurement procedures.  Such appeals are not uncommon, and sometimes lead to reversals.  But the GAO concluded, in a report issued on July 30, that NASA had followed the proper procedures and was justified in making the award to SpaceX.

While Dynetics accepted this and moved on, Blue Origin decided then to file a court case protesting NASA’s decision.  This was frustrating to many, as NASA could not grant the award to SpaceX nor work with SpaceX on the contract while an appeal was underway.  Both sides (NASA and Blue Origin) agreed, however, to expedited court procedures where the judge would make a decision (without a jury) and would do so by early November.  The judge’s decision was then announced on November 4, rejecting Blue Origin’s claims.  The full decision was released on November 18, after Blue Origin had been given the chance to make redactions of commercially confidential information in that judicial opinion.

4)  The Possibilities with Lunar Starship

The mission profiles discussed above follow what NASA has set out for its Artemis plans to return to the Moon.  That is, NASA set how the HLS chosen would be used, and the missions are based on use of an Orion to take the astronauts to the high NRHO lunar orbit and an SLS to launch them there (along with, possibly, use of the Lunar Gateway in the NRHO orbit to serve as a staging area).  The Lunar Starship would then take the crew from the lunar orbit to the surface of the Moon and back.  The Starship would have been launched into Earth orbit, refueled there, then flown to the NRHO orbit, and following the delivery of the crew back at the NRHO would be flown back to Earth orbit for refueling after which it could be used again for the next lunar mission.

But if a Lunar Starship can do all this, there is the obvious question of why one needs the Orion, the SLS, and the Lunar Gateway, at all.  The Lunar Starship will have all the life support systems, seats, and other equipment required to carry the astronauts to a lunar landing and then to support them there for extended periods (one week on the first mission, a month on the second, and more later).  It will also have lots of space and an ability to carry a cargo load far in excess (more than 100 times as large) of what NASA set in its minimum requirements.  Forcing the four astronauts to squeeze into the Orion capsule (with a habitable volume of just 9 cubic meters) for the multi-day flight to lunar orbit, while the Lunar Starship (with a habitable volume of 1,000 cubic meters) would fly there empty, seems absurd.  It would be similar to forcing a group of four to squeeze into a Volkswagon Beetle for a drive across the US, while a luxury bus drove the same route, but empty, only to be used for a final short segment at the end of the journey.

I fully acknowledge that there will be technical issues to work through.  Fuel loads would have to be calculated and would need to suffice.  But the flexibility in the Starship system, where additional in-orbit refuelings could be provided if there is a need, combined with a scaling back, if need be, of the payload to be lifted (a 100-ton capacity means there is a lot of room for adjustment), means that if a Lunar Starship in the NASA HLS role is feasible, then it should certainly be for this expanded role as well.

The mission plan would then be that once there is a fully fueled Lunar Starship in Earth orbit (with whatever number of refueling flights to the Fuel Depot Starship that might require, with the Lunar Starship then fueled from what has been stored in the Fuel Depot Starship), the NASA crew of four (or even a substantially higher number, as there would be plenty of room) would be flown to transfer to the vehicle while it is still in Earth orbit.  They could be flown there on a regular Orbital Starship flight or even on one or more flights of a Falcon 9 with the now well-tested Crew Dragon capsule.  They would then be flown on the Lunar Starship directly to the lunar surface, or possibly first to a lunar orbit and then to the surface.

Furthermore, given its vast size the Lunar Starship could in effect be an instant base on the Moon.  There would be no need to bring to the Moon via a series of separate flights all the components that would otherwise be needed to build such a base.  NASA’s long-term Artemis plans had envisaged this following the first two Artemis landing missions (at least in the plans set before Lunar Starship was chosen).  A permanent, habitable, structure (“Artemis Base Camp”) would have been built on the lunar surface to house the crews, with this slowly expanded in size as additions are brought on subsequent missions.  With the available space in the Lunar Starship, there would be no need.  And the Lunar Starship would also have the space needed, as well as the cargo capacity, for the lunar rovers that NASA has planned.

The Lunar Starship as a lunar base would also have the rather unique capability of being packed up, lifting off, and then flown to a new location, if there is any desire to do this.  There might be value in exploring various sites around the Moon – in a search for frozen waters supplies, for example.  One would just have to ensure that adequate reserves of fuel were brought along.  And if, as some believe likely, significant amounts of frozen carbon dioxide along with frozen water are found on the Moon (most likely near the South Pole, which is why this has been chosen for the early missions and the planned Artemis Base Camp), then it would be possible to produce the liquid methane fuel the Starship uses along with the liquid oxygen, and refuel the Lunar Starship while it is there.

If there is a need for additional cargo, one could also design a version of the Lunar Starship to carry cargo only.  It would fly there on its own (which is now a standard technology – indeed under the NASA HLS contract the Lunar Starship would be required to complete an entire unmanned flight as it would under Artemix III, including landing on the Moon, as a test of the entire system before any crew is put aboard).  If it was not then to be returned to the Earth and thus not need the fuel to do so, but rather remain on the surface as a permanent addition to a growing lunar base, such a cargo flight could bring a load of as much as 200 tons.  This is huge.  The weight (mass really) of the entire International Space Station is, after all the additions over the years, now 420 tons.

And the possibilities the Starship system would open up are not just limited to the Moon.  Very recently, a group of prominent planetary scientists issued a White Paper arguing that with the availability of Starship, the traditional approach taken to planetary exploration missions should be radically re-thought.  With the capacity of the Starship, along with its low cost, planetary missions could become not simply far more frequent but also simplified in design.  Rather than spend a good deal of money and a good deal of time in refining the spacecraft to reduce its weight by a few ounces or its dimensions to fit into the limited capacity of the existing rockets that are used, one could simply use off-the-shelf equipment when Starship is used to send it on its way.  Finally, there is of course the missions to Mars for which the Starship system has been designed.  But all this goes beyond what I intended to cover in this already long post.

Finally, flying the lunar missions on Starship rather than with the Orion, SLS, and associated systems would be far cheaper.  As an extremely rough calculation:  Assume that each Starship launch will cost $20 million (ten times the $2 million Elon Musk has said it will ultimately cost) and that 10 Starship launches would be required for each mission (for refueling in orbit – note that the Lunar Starship and the Fuel Depot Starship would remain in space following their initial launch and would be reused), for a total cost of $200 million for the launches.  For simplicity, assume all the other costs of the launches and then for carrying out the mission would be similar and hence the total cost would be $400 million to carry out the mission.  While crude, this estimate almost certainly errs on the high side.  The actual cost is likely to be lower, but take $400 million for the purposes here.

In contrast, the Office of the Inspector General (OIG) of NASA in a recent (November 15, 2021) report assessing NASA’s Management of the Artemis Missions estimated that the cost of a single SLS launch with an Orion capsule for an Artemis mission would come to $4.1 billion.  The SLS itself (none of which is reusable – all is thrown away in each launch) would cost $2.2 billion.  This is similar to, but 10% more than, the estimated $2.0 billion cost per launch for the SLS made by the White House Office of Management and Budget (OMB) and released in a letter to Congress in 2019.

The NASA OIG estimated that the cost of an Orion crew vehicle, including the cost of the Service Module being built by the European Space Agency, would total $1.3 billion, of which $300 million would be for the Service Module.  In my earlier blog post, I used the contracted amount NASA would pay for the third through the fifth Orion vehicles ($900 million each), but the earlier ones would be higher and the $1.0 billion estimate of the OIG is consistent.  Interestingly, I had thought in my earlier blog post that the European Space Agency would be covering the cost of the $300 million Service Module they are making for the Orion, but the OIG report clarifies that this will not really be the case.  While the Europeans will be paying the contractor that will build the module, NASA will then not charge the Europeans $300 million (per Orion) for costs incurred on behalf of the Europeans at the International Space Station.  That is, this is a barter agreement, so NASA is in fact paying that $300 million cost, but indirectly.  By including it in the ISS budget, where it is not broken out in what is made publicly available, one cannot determine the true cost of the complete Orion vehicle without access to unpublished information.

Finally, the NASA OIG also includes in the cost of an SLS launch the pro-rated share of what it costs to maintain the ground facilities (the launch pad, etc.) needed for an SLS launch.  Since there will be only (at most) one SLS launch per year, this will be the annual budget for maintaining and then using (once) that capacity, which the NASA OIG estimates to be $568 million per launch.

The NASA OIG therefore estimates the total cost per launch of the SLS with Orion will be $4.1 billion.  This would be ten times the generously estimated cost of doing the same via Starship, and for far less capacity.

D.  Politics

Why then keep funding the SLS and Orion?  In the near term, it might make sense.  After all, despite all that has already been done to test and develop Starship, the testing is not yet complete and orbital testing is still to start.  And while NASA technical staff concluded it should ultimately work, it might not.  The key tests will be in the next year, however, and we should know by the end of 2022 (or before) whether Starship will work as planned.  There will certainly be failures at first in the upcoming orbital tests.  As discussed above, this is to be expected in the iterative development process used by SpaceX.  But with iterative improvements, with solutions found to the problems uncovered, it will eventually work.  We will only know that for sure, however, when it does.

Whether Starship will work should be known, however, by no later than the end of 2022.  Provided Starship has demonstrated that it will indeed work, should one then expect to see NASA (with Congress) decide to close down the SLS and Orion funding and switch over to the far more capable and far less costly Starship system?  The answer to that is:  not likely.

First of all, it will be politically embarrassing to admit that it was a mistake.  By the end of FY23, over $54 billion will have been spent ($32 billion for the SLS and $22 billion for the Orion).  The fundamental error came when Congress in 2010 forced the Obama administration to start development immediately of a heavy-lift launcher that became the SLS.  The Obama administration had recommended that NASA should first examine and test certain new technologies (in particular in-orbit refueling ability), with the results then used to determine how best then to design such a launcher.  Congress, and in particular the Senate, insisted (and wrote into law in the 2010 NASA authorizing legislation) that the heavy-lift launcher be designed immediately and furthermore that it make use of the key components of the Space Shuttle (e.g. the engines) in that design.  By mandating this, those in their states and districts who had been employed building such components for the Space Shuttle would remain employed.  But with such requirements written into law, some wags have concluded the SLS should not stand for Space Launch System but rather Senate Launch System.

Republican Senator Shelby of Alabama (home of the NASA Marshall Space Flight Center in Huntsville – the center with the primary responsibility for the SLS) was a key advocate, as was Republican Senator Kay Bailey Hutchison of Texas (home of the NASA Johnson Space Center in Houston – responsible for manned space flight operations).  Senators from Mississippi (home of the Stennis Space Center, where large rocket engines are tested), Louisiana (home of the Michoud Assembly Facility), and Utah (home of the company that builds the solid rocket boosters that are strapped on to the first stage) were also important advocates.  As was one Democratic Senator – Bill Nelson of Florida (home of the Kennedy Space Center), who was the chair of the subcommittee that drafted the NASA Authorization Act of 2010 when Democrats controlled the Senate.

Former Senator Bill Nelson is now NASA Administrator.  Canceling SLS and Orion would be an embarrassment for him, even if Starship demonstrates its full ability to carry out the nation’s lunar exploration plans – and do so far more effectively and at far lower cost.  As NASA Administrator he has already signaled that NASA intends to continue to use the SLS, and for possibly 30 years or more.  In October, NASA issued a “Request for Information” to the aerospace industry, requesting proposals from firms willing to produce, operate, and maintain the SLS rocket system until the 2050s, with the stated intention that this should reduce the “baseline per flight cost” of an SLS launch by “50% or more”.  The NASA Request for Information did not say, however, what the current baseline cost was from which the 50% would be taken, and refused to respond to reporter queries on what NASA estimates that cost to be.  But as noted above, the White House Office of Management and Budget indicated in a letter to Congress in 2019 that the cost was $2.0 billion per launch.  A more recent estimate from the NASA OIG puts that cost at $2.2 billion.

But NASA itself has consistently refused to reveal what the per launch costs of the SLS will be.  This is despite repeated recommendations over the years by oversight bodies that it should.  For example, the Government Accountability Office (GAO), which is formally part of the legislative branch reporting to Congress, recommended NASA provide such an accounting in a 2017 report, when it was already clear that the SLS would be delayed and well over the original planned cost.  More recently, the NASA OIG report of November 15, assessing the management of the Artemis program, recommended that NASA management provide such figures.  But NASA management has continued to refuse.  The NASA OIG report made nine recommendations, and NASA management accepted seven (two partially).  But it rejected the two recommendations on the issue of being transparent on costs.

Congress has, however, not forced NASA to reveal those costs.  While the overall budget of NASA is known year by year, as well as the budgets of major sub-aggregates of certain individual programs as NASA has organized them, one cannot work out from this the overall cost of a major program such as Artemis (with responsibilities for portions of the program spread across much of the agency) nor work out a separation between the cost of developing a new vehicle or system such as the SLS and the cost then of using that system on individual missions.  There is a lack of transparency, although entities such as the GAO or the NASA OIG (as well as journalists and other outsiders) may try to come up with estimates.

Senators and Members of Congress may be quite comfortable, however, with this lack of transparency.  It then does not draw attention to the overall costs (and how high those costs might have grown to) even though they still wish to see (and to publicize) how much is being spent in their particular districts.  And NASA is glad to provide this.  For examples, see here, here, here, here, here, and here.  Spending more is seen not as a flaw but as a feature.

The SpaceX Starship, if it works, may have a cost of just $2 million per launch.  Even if the cost turns out to be ten times that, it will still be dramatically less costly than an SLS alone, and even more so of an SLS plus Orion system.  Furthermore, and importantly, it would be far more capable.  It would enable far more to be achieved in meeting the stated national objectives of the space exploration program than would be possible with the SLS plus Orion system.  It would be quite revolutionary.  But it will only be used for this purpose if the American political system allows it.